• Title/Summary/Keyword: runoff loss

Search Result 207, Processing Time 0.033 seconds

A study on the definition of Agricultural water use and the calculation methods (농업용수 이용량 산정 합리화 방안 연구)

  • Park, Kap-Soon;Lee, Seong-Hee;Kim, Tae-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.41-44
    • /
    • 2002
  • It is unreasonable to calculate the amount of agricultural water use by applying unit demand method, because it is different from other water use due to the return flow and reuse in the recycle of watershed. Data from irrigation pumping station and reservoir were analysed. Factors for water balance are precipitation, evapotranspiration, percolation, runoff, and management loss, etc. Here in the study, the amount of agricultural water was defined in the way of three different categories. First one is "Gross water" including evapotranspiration, percolation, and management loss. Second one is "Agricultural water" including Gross water and effective rainfall. Third one is "Broad water" which is abstracting the return flow from Agricultural water.

  • PDF

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Estimation of Suspended Sediment Load in Imha-Andong Watershed using SWAT Model (SWAT 모델을 이용한 임하.안동 유역의 부유사량 발생량 추정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Joon-Woo;Lee, Sang-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1209-1217
    • /
    • 2008
  • For efficient turbid water management a SWAT model was established for the Imha-Andong watershed where serious turbid water problems have frequently occurred. To evaluate soil loss combined with rainfall runoff process, the analysis focused on comparing the daily runoff discharge and concentration of suspended sediment (SS) using measured data sets. The results of annual SS load analysis for each sub-basin using the calibrated model showed that in the entire target watershed the soil loss ranged from 0.7 to 5.9 tons/ha in year 2005 and from 3.0 to 34.0 tons/ha in year 2003 when the typhoon 'Maemi' severly affected the area. In the future, it is suggest to increase model simulation accuracies supported by a long-term and extensive monitoring to enhance basin-wide suspended sediment estimation and management.

Evaluation of Surface Covering Methods for Reducing Soil Loss of Highland Slope in Radish Cultivation (고랭지 경사 밭 무 재배지에서 토양유실경감을 위한 피복방법 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Park, Suk-Hoo;Han, Kyung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.667-673
    • /
    • 2011
  • There is relatively high vulnerability of soil erosion in slope highland agriculture due to a reclamation of mountain as well as low surface covering in early summer season with high rainfall intensity time. The aim of this study was to evaluate various surface covering methods for reducing soil loss in highland radish cultivation in highland. The experiment was conducted in 17% sloped lysimeter ($2.5m{\times}13.4m$) with 8 treatments including covering with cut rye, sod culture of rye, Ligularia fischeri var. spiciformis Nakai, Arachniodes aristata Tindale, Aster koraiensis Nakai, Festuca myuros L. and mulching with black polyethylene film, and runoff water, eroded soil and radish growth were investigated. Surface covering with sod culture and plant residue, especially cut rye treatment, had lower runoff water than non-covering, whereas black polyethylene film mulching had the reverse. The amount of eroded soil was also lowest in cut rye treatment, $0.3Mg\;ha^{-1}$, and increased in the order of rye sod culture, Ligularia fischeri var. spiciformis Nakai, Aster koraiensis Nakai, Festuca myuros L., Arachniodes aristata Tindale, black polyethylene film, and non-covering, $68.2Mg\;ha^{-1}$. The results showed that surface covering with sod culture or plant residue could be effective for reducing runoff water and soil erosion in the radish field, significantly in cut rye treatment. On the other hand, in sod culture of rye, Aster koraiensis Nakai and Ligularia fischeri var. spiciformis Nakai, radish yields were lower than in the non-covering. Unlike this, covering with cut rye, sod culture of Festuca myuros L. had similar radish yield to the non-covering radish yield. In conclusion, covering with cut rye and sod culture of Festuca myuros L. were beneficial for reduction of soil loss without decreasing in radish yield in highland sloped fields.

Evaluation of Runoff and Sediment Yield Reduction with Diversion Ditch and Vegetated Swale Using WEPP Model (WEPP 모형을 이용한 우회수로 및 식생수로의 유출 및 토사유출 저감 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.863-873
    • /
    • 2011
  • It has been known that soil erosion caused by water has been a serious problem worldwide. Thus various modeling techniques for conservationists, farmers, and other land users have been developed and utilized to estimate effects of numerous site-specific Best Management Practices on soil erosion reduction. The physical process-based WEPP model would provide both temporal and spatial estimates of soil loss within small watersheds and for hillslope profiles within small watersheds. Thus, the WEPP watershed version was applied to study watershed, located at Jawoon-ri, Gangwon to simulate diversion ditch and vegetated swale with detailed input data set. The sediment yield and runoff reduction rates reduced by 5.8% and 29.6% with diversion ditch and 9.8% and 14.5% with vegetated swale. With vegetated diversion ditch, runoff and sediment yield could be reduced by 11.8% and 40.4%, respectively. Based on the results obtained in this study, the WEPP model would be an useful tool to measure runoff and sediment yield reduction and establish site-specific sediment reduction best management plan.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Development of Hydrologic Simulation Model to Predict Flood Runoff in a Small Mountaineous Watershed (산지 소유역의 홍수유출 예측을 위한 모의발생 수문모형의 개발)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.58-68
    • /
    • 1988
  • Most of the Korean watersheds are mountaineous and consist of various soil types and land uses And seldom watersheds are found to have long term hydrologic records. The SNUA, a hydrologic watershed model was developed to meet the unique characteristics of Korean watershed and simulate the storm hydrographs from a small mountaineous watershed. Also the applicability of the model was tested by comparing the simulated storm hydrographs and the observed from Dochuk watershed, Gwangjugun, Kyunggido The conclusions obtained in this study could be summarized as follows ; 1. The model includes the simulation of interception, evaporation and infiltration for land surface hydrologic cycle on the single storm basis and the flow routing features for both overland and channel systems. 2. Net rainfall is estimated from the continuous computation of water balance at the surface of interception storage accounting for the rainfall intensities and the evaporation losses at each time step. 3. Excess rainfall is calculated by the abstraction of infiltration loss estimated by the Green and Ainpt Model from the net rainfall. 4. A momentum equation in the form of kinematic wave representation is solved by the finite differential method to obtain the runoff rate at the exit of the watershed. 5. The developed SNUA Model is a type of distributed and event model that considers the spatial distribution of the watershed parameters and simulates the hydrograph on a single storm basis. 6. The results of verification test show that the simulated peak flows agree with the observed in the occurence time but have relative enors in the range of 5.4-40.6% in various flow rates and also show that the simulated total runoff have 6.9-32% of relative errors against the observed. 7. To improve the applicability of the model, it was thought that more studies like the application test to the other watersheds of various types or the addition of the other hydrologk components describing subsurface storages are needed.

  • PDF

Modeling Rainfall - Runoff Simulation System of JinWie Watershed using GIS based HEC-HMS Model (GIS 기반의 HEC - HMS를 이용한 진위천 유역의 강우-유출모형 구성)

  • Kim, Sang-Ho;Park, Min-Ji;Kang, Soo-Man;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • The purpose of this study is to prepare input data for FIA (flood inundation analysis) and FDA (flood damage assessment) through rainfall-runoff simulation by HEC-HMS model. For Jinwie watershed ($737.7km^2$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. The results will be used for river routing and inundation propagation analysis for various flood scenarios.

  • PDF

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS (HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석)

  • Hwang, Byung-Gi;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

Development and Application of a Physics-based Soil Erosion Model (물리적 표토침식모형의 개발과 적용)

  • Yu, Wansik;Park, Junku;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Park, Youn Shik;Hwang, Sangil;Lee, Giha
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.