• Title/Summary/Keyword: runoff loss

Search Result 207, Processing Time 0.026 seconds

Characteristics of Runoff Load from Nonpoint Source Pollutants in the Lake Doam Watershed (도암호 유역에서 비점오염물질의 유출부하 특성)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Gim, Giyoung;Kang, Phil-Goo;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.135-147
    • /
    • 2018
  • In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and $0.06{\sim}2.21mg\;L^{-1}$, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and $0.03{\sim}22.85ton\;event^{-1}$, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with $88,645tons\;year^{-1}$ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.

Occurrence and Behavior Analysis of Soil Erosion by Applying Coefficient and Exponent of MUSLE Runoff Factor Depending on Land Use (국내 토지이용별 MUSLE 유출인자의 계수 및 지수 적용을 통한 토양유실 발생 및 거동 분석)

  • Lee, Seoro;Lee, Gwanjae;Yang, Dongseok;Choi, Yujin;Lim, Kyoung Jae;Jang, Won Seok
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.98-106
    • /
    • 2019
  • The coefficient and exponent of the MUSLE(Modified Universal Soil Loss Equation) runoff factor in the SWAT(Soil and Water Assessment Tool) model are 11.8 and 0.56 respectively, which are equally applied to the estimation of soil erosion regardless of land use. they could derive overestimation or underestimation of soil erosion, which can cause problems in the selection of soil erosion-vulnerable area and evaluation of reduction management. However, there are no studies about the estimation of coefficients and exponent for the MUSLE runoff factor by land use and their applicability to the SWAT model. Thus, in order to predict soil erosion and sediment behavior accurately through SWAT model, it is necessary to estimate the coefficient and exponent of the MUSLE runoff factor by land use and evaluate its applicability. In this study, the coefficient and exponent of MUSLE runoff factor by land use were estimated for Gaa-cheon Watershed, and the differences in soil erosion and sediment from SWAT model were analyzed. The coefficient and exponent of runoff factor estimated by this study well reflected the characteristics of soil erosion in domestic highland watershed. Therefore, in order to apply the MUSLE which developed based on observed data of US agricultural basin to the domestic watershed, it is considered that a sufficient modification and supplementation process for the coefficient and exponent of the MUSLE runoff factor depending on land use is necessary. The results of this study can be used as a basic data for selecting soil erosion vulnerable area in the non-point source management areas and establishing and evaluating soil erosion reduction management.

Effects of Different Restoration Practices on Nutrient Loss from Sediments after a Forest Fire in Two Watersheds

  • Hwang, Tae-Hwan;Lee, Kyu-Song;Park, Sang-Deog;Choung, Yeon-Sook
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.265-269
    • /
    • 2007
  • The loss of nitrogen and phosphorus from sediments in two watersheds, one naturally regenerating and one artificially planted, in Sacheon-myun, Gangneung-si, Gangwon Province, were measured two years after a forest fire in 2000. Sediment losses occurred five times in the course of the year. In the artificially planted watershed, $50{\sim}140$ times more nitrogen and $54{\sim}139$ times more phosphorus were lost with sediments during heavy rains, from July to August, than in the naturally regenerating watershed. When the typhoon Rusa struck the country, 1,389 times more nitrogen and 1,647 times more phosphorus were lost from the artificial watershed. In spite of the limited scope of this study, these results suggest that artificially planted watersheds are extremely vulnerable to catastrophic natural disasters such as typhoons. Elevated loss of nutrients in the artificially planted watershed might have resulted from the mechanized silvicultural practices employed immediately after the fire. To maximize soil preservation, the timing and necessity of plantation practices should be reconsidered, and rapidly regenerating vegetation should be protected to promote nutrient uptake and to mitigate nutrient loss from burned forests.

Optimization of Operation and Backwashing Condition for an Upflow Stormwater Filtration System Utilizing Ceramic Media (세라믹 여재를 활용한 상향류식 여과형 비점오염저감시설의 최적 운전 및 역세척 조건)

  • Hwang, Yuhoon;Seo, Younggyo;Kim, Hyowon;Roh, Kunwan;Shin, Hyunsang;Kim, Dogun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.478-488
    • /
    • 2017
  • Stormwater filtration is widely used for the urban runoff treatment. However, intensive maintenance and lack of information about the performance have resulted in an increased need of proper evaluation. In this study, the performance of an upflow stormwater runoff filtration system, consisting of a supporting unit and a filtration unit filled with a ceramic media, was investigated. The maximum head loss increase was about 3 cm under the suspended solid (SS) load of $30kg/m^2$ and the SS removal was more than 96%, when the filtration velocity was 20-40 m/h. The head loss and the porosity of the media can successfully be described by a power model. It was confirmed that the a significant amount of SS can effectively be removed at supporting unit, minimizing SS load to the filter media bed. Several backwashing strategies have been tested to establish the optimum condition. It was found that the stagnant water discharge is important to minimize the SS release immediately after backwashing. Also, the filter bed loaded with $400-450kg/m^2$ SS can almost completely be washed to reduce the head loss to the that of empty bed. The results in this study indicate that the upflow ceramic media filter is an excellent alternative to stormwater treatment, with high SS removal and long lifespan.

Effect of Forest Growth and Thinning on the Long-term Water Balance in a Coniferous Forest (침엽수인공림에서 임분 성장 및 간벌이 장기 물수지에 미치는 영향)

  • Choi, Hyung-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • Long-term annual water balances are analyzed for two forest catchments located in Gwangneung covered with forests of different types and ages. The water balance trends of the two catchments from 1982 to 2009 are compared to identify the effect of forest growth and thinning on the water balance in a planted coniferous forest catchment. According to the averaged annual precipitation and runoff for the four designated periods from 1982 to 2009, the water balance of the old natural broad-leaved forest catchment (GB) remained relatively unchanged. In contrast, the young planted coniferous forest catchment (GC) showed significant changes in the water balance due to the forest growing and thinning. The results showed that the catchment runoff decreases with increasing tree age whereas the forest thinning results in an increase in catchment runoff. The mean annual runoff from the catchment GC after thinning increased by 1.7 times, compared with the mean annual runoff before forest thinning. The mean annual runoff from the catchment GB was very stable throughout the period. However, such an effect of forest thinning appeared to last only for about 10 year-period, after which the water yield increment in the catchment GC disappeared. It indicates that the proper forest management should be reconsidered at the interval of 10 years to effectively reduce water loss and increase water yield in the planted coniferous forest.

The furulamelllal study in order to obtain the hydrological design basis for hydrological structures in Korea (Run ofl estimate and Flood part) (한국에 있어서 제수문구조물의 설계의 기준을 주기 위한 수문학적 연구(류거, 홍수 편))

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1011-1034
    • /
    • 1966
  • This thesis is the final report which has long been studied by the author to obtain the design basis for various hydrological constructions with the specific system suitable to the natural environmental conditions in Korea. This report is divided into two parts: one is to estimate runoff volume from watersheds and the other to estimate the peak discharge for a single storm. According to the result of observed runoff record from watersheds, it is known that Kajiyama formula is useful instrument in estimating runoff volume from watersheds in this country. But it has been found that this formula shows us 20-30% less than the actual flow. Therefore, when wihed to bring a better result, the watershed characteristics coefficient in this formula, that is, f-value, should be corrected to 0.5-0.8. As for the method to estimate peak discharge from drainage basin, the author proposes to classify it in two ways; one is small size watershed and the other large size watershed. The maximum -flood discharge rate $Q_p$ and time to peak Pt obtained from the observed record on the small size watershed are compared by various methods and formulas which are based upon the modern hydrological knowledge. But it was fou.d that it. was not a satisfied result. Therefore, the author proposes. tocomputate $Q_p$, to present 4.0-5.0% for the total runoff volume ${\Sigma}Q$.${\Sigma}Q$ is computed under the assumption of 30mm 103s in watershed per day and to change the theoritical total flow volume to one hour dura tion total flow rate when design daily storm is given. Time to peak Pt is derived from three parameters which are u,w,k. These are computed by relationship between total runoff volume (ha-m unit)and $Q_p$. (C.M.S. unit). Finally, the author checked out these results obtained from 51 hydrographs and got a satisfied result. Therefore the author suggested the model of design dimensionless unit-hydrograph. And the author believes that this model will be much available at none runoff record river site. In the large size watersheds in Korea when the maximum discharge occurs, the effective rainfall is two consequtive stormy days. So the loss in watershed was assutned as 6Omm/2days,and the author proposed 3-hour-daration hydrograph flow distribution percentage. This distribution percentage will be sure to form the hydrograph coordinate.

  • PDF

Soil sealing in the European Union (긴급제언 - 유럽연합의 토양포장)

  • Lee, Yeong Heui
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.6
    • /
    • pp.37-43
    • /
    • 2012
  • Every year in Europe, soils covering an area larger than the city of Berlin are lost to urban sprawl and transport infrastructure. Soil sealing causes an irreversible loss of the biological functions of soil. As water can neither infiltrate nor evaporate, water runoff increases, sometimes leading to catastrophic floods. Landscapes are fragmented and habitats become too small or too isolated to support certain species. In addition, the food production potential of land is lost forever. There is an urgent need to use this valuable resource more wisely, in order to secure its many vital services for future generations. The EU faces new territorial challenges.

  • PDF

Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures (경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Kim, Won-Tae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.268-273
    • /
    • 2006
  • Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.

A Study to Develop Monthly Cover Management Factor Database for Monthly Soil Loss Estimation (월단위 토양유실가능추정치를 위한 지표피복인자의 산정 방안 연구)

  • Sung, Yun Soo;Jung, Yunghun;Lim, Kyoung Jae;Kim, Jonggun;Kim, Ki-Sung;Park, Seung Ki;Shin, Min Hwan;Kum, Dong Hyuk;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • Soil loss is an accompanying phenomenon of hydrologic cycle in watersheds. Both rainfall drops and runoff lead to soil particle detachment, the detached soil particles are transported into streams by runoff. Here, a sediment-laden water problem can be issued if soil particles are severely detached and transported into stream in the watershed. There is a need to estimate or simulate soil erosion in watersheds so that an adequate plan to manage soil erosion can be established. Universal Soil Loss Equation (USLE), therefore, was developed and modified by many researchers for their watersheds, moreover the simple model, USLE, has been employed in many hydrologic models for soil erosion simulations. While the USLE has been applied even in South-Korea, the model is often regarded as being limited in applications for the watersheds in South-Korea since monthly conditions against soil erosion on soil surface are not capable to represent. Thus, the monthly USLE factors against soil erosion, soil erodibility and crop management factors, were established for four major watersheds, which are Daecheong-dam, Soyang-dam, Juam-dam, and Imha-dam watersheds. The monthly factors were established by recent fifteen years from 2000 to 2015. Five crops were selected for the monthly crop management factor establishments. Soil loss estimations with the modified factors were compared to conventional approach that is average annual estimations. The differences ranged from 9.3 % (Juam-dam watershed) to 28.1 % (Daecheong-dam watershed), since the conventional approaches were not capable of seasonally and regionally different conditions.

A Study on the Estimation of River Management Flow in Urban Basin (도시유역의 하천유지용수 산정에 관한 연구)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.377-385
    • /
    • 1996
  • This study aims at the estimation of a river management flow in urban basin analyzing Sinchun basin to be the tributary of Kumho river basin. The river management flow has to satisfy a low flow as natural flow and an environmental preservation flow estimated by a dilution flow to satisfy a target water quality in drought flow. Therefore for the estimation of a river management flow in Sinchun in this study, first Tank model as a basin runoff model estimates a low flow, a drought flow from a flow duration curve in Sinchun, second QUAL2E model as water quality model simulates water quality in Sinchun and estimates environmental preservation flow to satisfy a target water qua%its, BOD 8 mg/l by a dilution flow derived from Kumho river, Nakdong river and around water. And the river management flow is estimated by addition of a use flow and a loss flow to more flow between a low-flow and an environmental preservation flow.

  • PDF