하천에서의 홍수유출 예측은 하천의 치수적인 측면에서도 중요하다. 본 논문에서는 신경회로망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경회로망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시 신경회로망 모형이 실시간 홍수량 예측에 적합한 모형으로 선정되었다. 신경회로망 모형은 Web 상에서 사용이 가능하게 변환하여 홍수유출 예측시스템의 기본모형으로 개발하였다.
This study is daytime and nighttime runoff image data caused by heavy rain on May 27, 2013 at Oedo Water Treatment Plant of Oedo-Stream, Jeju to compute runoff by applying Surface image velocimeter (SIV) and analyzing correlation according to current. At the same time, current was comparatively analyzed using ADCP observation data and fixed electromagnetic surface current meter (Kalesto) observed at the runoff site. As a result of comparison on resolutions of daytime and nighttime runoff images collected, correlation coefficient corresponding to the range of 0.6~0.7 was 6.8% higher for nighttime runoff image compared to daytime runoff image. On the contrary, correlation coefficient corresponding to the range of 0.9~1.0 was 17% lower. This result implies that nighttime runoff image has lower image quality than daytime runoff image. In the process of computing current using SIV, a rational filtering process for correlation coefficient is needed according to images obtained.
The conceptual rainfall-runoff models are used to predict complex hydrological effects of a basin. However, to obtain reliable results, there are some difficulties and problems in choosing optimum model, calibrating, and verifying the chosen model suitable for hydrological characteristics of the basin. In this study, Genetic Algorithm and SCE-UA method as global optimization methods were applied to compare the each optimization technique and to analyze the application for the rainfall-runoff models. Modified TANK model that is used to calculate outflow for watershed management and reservoir operation etc. was optimized as a long term rainfall-runoff model. And storage-function model that is used to predict real-time flood using historical data was optimized as a short term rainfall-runoff model. The optimized models were applied to simulate runoff on Pyeongchang-river watershed and Bocheong-stream watershed in 2001 and 2002. In the historical data study, the Genetic Algorithm and the SCE-UA method showed consistently good results considering statistical values compared with observed data.
The purpose of this study were to monitor rainfall and runoff data from paddy blocks and forest areas at the Balan Experimental Watershed, and to investigate the variations of runoff characteristics with different land use. Field data showed that the total runoff from paddies and forest areas are not significantly different in volume. The peak discharge from forest areas was less than that from paddies for lighter storms, but became greater for heavier storms. The results demonstrate that paddies play an important role to reduce peak discharge from heavy storms as compared to forest.
This paper presents a framework for developing an object-oriented system for runoff analysis. The objects include rainfall, meterorologic, watershed, reservoir, stream, DB management, and GUI. Data and method of each object were analyzed and defined. The database for runoff analysis were designed and DBMS MS-Access was chosen. The system design features and implementation are described, and an graphic user interface for flood runoff is presented
This paper documents recent efforts to validate the GIS-based hydrologic models, HEC-HMS and HEC-GeoHMS by the US Army Corps of Engineers. HMS and Geo-HMS were used to simulate storm runoff from a small rural watershed, the Balan HS#6. The watershed is 3.85 $\textrm{km}^2$ in size. The watershed topographic, soils, and land use data were processed using the GIS tool fur the models. Input parameters were retrieved and calibrated with the field data. The simulated peak runoff, time to peak, and total direct runoff fer twenty three storms were compared with the observed data. The results showed that the coefficient of determination($R^2$) for the observed peak runoff was 0.95 and an error, RMSE, 3.08 $\textrm{m}^3$/s for calibration stages. In the model verifications, $R^2$ was 0.89 and RMSE 6.79 $\textrm{m}^3$/s, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well compared to the observed. It was concluded that HMS and GeoHMS are applicable to flood analyses for rural watersheds.
The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.
This study was performed to evaluate the drain runoff characteristics from one paddy field, and to provide the basic data required for the determination of flood discharge and unit drainage water for drainage improvement and farmland consolidation. For this purpose, under the assumption that drain discharge from paddy field was similar to outflow of reservoir, runoff model based on storage equation was applied to the experimental field, and simulated results were compared to the measured discharge at weir point. To estimate effective storage volume of paddy field with water depth, 4 regression formula were examined such as linear, exponential, power, and combined. From the observed runoff characteristics, it was shown to be 3.3~16.3${\ell}$/sec in weir discharge, 57.2~98% in runoff ratio, and relative error of simulated result was 3.0~39.4%, 8.5 ~56.0 % for peak flow and runoff ratio, respectively. Curve number by SCS method was calculated as mean value of 96.4 using measured rainfall and runoff data, it was considered relatively high because paddy field has generally flooding depth contrary to the upland watershed area.
강우-유출 모의를 수행할 때 기상 및 강우관측소의 자료를 이용하는 것이 일반적이다. 그러나 유역면적이 클 경우 기상 및 강우관측소의 자료만으로 신뢰성 있는 유출량을 산정하기란 어렵다. 따라서 본 연구에서는 이용되는 강우자료에 따라 준분포형 모형에 의해 산정되는 유출량에 미치는 영향을 검토하기 위해 대상유역에 위치하고 있는 기상관측소의 강우자료, 기상 및 강우관측소의 강우자료, 크리깅 기법에 의해 기상 및 강우관측소의 강우자료를 공간적으로 분포시켜 얻은 가상지점의 관측 강우자료를 이용해 각 소유역의 면적 강우량을 산정하였다. 또한 각각의 강우자료들을 비교하였으며, 분포형 모형인 SWAT모형을 이용하여 각각의 강우자료에 따른 유출량을 비교 분석하였다. 본 연구는 공간 분포된 면적강우량을 이용해 산정된 유출량의 정확성을 검토하기 위한 것으로써 분석 결과, 공간 분포된 면적 강우량을 이용한 유출량이 기상 및 강우관측소의 강우량을 이용한 유출량보다 실제 유출량을 보다 더 잘 모의하는 것으로 나타났다. 이는 공간 분포된 강우가 실제 강우패턴을 가장 잘 반영한다고 할 수 있다.
본 논문에서는 신경망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 홍수유출 예측을 위한 신경망 모형을 공주, 부여지점에 적용하였으며, 신경망 모형을 입력층, 은닉층, 출력층으로 구성하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시 신경망 모형이 실시간 홍수량 예측에 적합한 모형으로 선정되었다. 신경망 모형은 Web 상에서 사용이 가능하게 변환하여 홍수유출 예측시스템의 기본모형으로 개발되었다. Web 기반 모형으로 개발된 신경망 모형을 서버에 탑재하고 금강수계의 본류와 주요 지점에 적용하여 Web 상에서 개발된 모형의 적용성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.