• Title/Summary/Keyword: running robot

Search Result 94, Processing Time 0.029 seconds

An Implementation of the path-finding algorithm for TurtleBot 2 based on low-cost embedded hardware

  • Ingabire, Onesphore;Kim, Minyoung;Lee, Jaeung;Jang, Jong-wook
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Nowadays, as the availability of tiny, low-cost microcomputer increases at a high level, mobile robots are experiencing remarkable enhancements in hardware design, software performance, and connectivity advancements. In order to control Turtlebot 2, several algorithms have been developed using the Robot Operating System(ROS). However, ROS requires to be run on a high-cost computer which increases the hardware cost and the power consumption to the robot. Therefore, design an algorithm based on low-cost hardware is the most innovative way to reduce the unnecessary costs of the hardware, to increase the performance, and to decrease the power consumed by the computer on the robot. In this paper, we present a path-finding algorithm for TurtleBot 2 based on low-cost hardware. We implemented the algorithm using Raspberry pi, Windows 10 IoT core, and RPLIDAR A2. Firstly, we used Raspberry pi as the alternative to the computer employed to handle ROS and to control the robot. Raspberry pi has the advantages of reducing the hardware cost and the energy consumed by the computer on the robot. Secondly, using RPLIDAR A2 and Windows 10 IoT core which is running on Raspberry pi, we implemented the path-finding algorithm which allows TurtleBot 2 to navigate from the starting point to the destination using the map of the area. In addition, we used C# and Universal Windows Platform to implement the proposed algorithm.

A Design of the Recurrent NN Controller for Autonomous Mobil Robot by Coadaptation of Evolution and Learning (진화와 학습의 상호 적응에 의한 자발적 주행 로봇을 위한 재귀 신경망 제어기 설계)

  • Kim, Dae-Jin;Gang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.27-38
    • /
    • 2000
  • This paper proposes how the recurrent neural network controller for a Khepera mobile robot with an obstacle avoiding ability can be determined by co-adaptation of the evolution and learning, The proposed co-adaptation scheme consists of two folds: a population of NN controllers are evolved by the genetic algorithm so that the degree of obstacle avoidance might be reduced through the global searching and each NN controller is trained by CRBP learning so that the running behavior is adapted to its outer environment through the local searching. Experimental results shows that the NN controller coadapted by evolution and learning outperforms its non-learning equivalent evolved by only genetic algorithm in both the ability of obstacle avoidance and the convergence speed reaching to the required running behavior.

  • PDF

Goal-directed Obstacle Avoidance Using Lane Method (레인 방법에 기반한 이동 로봇의 장애물 회피)

  • Do, Hyun-Min;Kim, Yong-Shik;Kim, Bong-Keun;Lee, Jae-Hoon;Ohba, Kohtaro
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2009
  • This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacleis recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.

  • PDF

A Method to Support Real-time for User-level Robot Components on Windows (윈도우 유저 레벨 로봇 컴포넌트에 실시간성 지원 방법)

  • Ju, Min-Gyu;Lee, Jin-Wook;Jang, Choul-Soo;Kim, Sung-Hoon;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.51-59
    • /
    • 2011
  • Intelligent service robots leading the future market are robots which assist humans physically, mentally, and emotionally. Since intelligent service robots operate in a tightly coupled manner with humans, their safe operation should be an inevitable consideration. For this safety, real-time capabilities are necessary to execute certain services periodically. Currently, most robot components are being developed based on Windows for the sake of development convenience. However, since Windows does not support real-time, there is no option but to use expensive third-party software such as RTX and INTime. Also since most robot components are usually execute in user-level, we need to research how to support real-time in user-level. In this paper, we design and implement how to support real-time for components running in user-level on Windows using RTiK which actually supports real-time in kernel level on Windows.

Development of Path-Finding System for Humanoid Robots Based on Image Pattern Recognition (패턴 인식 알고리즘 기반 휴머노이드 경로 시스템 개발)

  • Park, Hyun;Eun, Jin-Hyuk;Park, Hae-Ryeon;Suk, Jung Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.925-932
    • /
    • 2012
  • In this paper, we develop a pattern recognition algorithm applied to a humanoid robot which is exploited as a guide for visually handicapped persons to find a desired path to their destinations. Behavior primitives of a humanoid robot are defined, and Canny's edge detection algorithm is employed to extract the pattern and color of the paving blocks that especially devised for visually handicapped persons. Based on these, an efficient path finding algorithm is developed and implemented on a humanoid robot, running on an embedded linux operating system equipped with a video camera. The performance of our algorithm is experimentally examined in terms of the response time and the pattern recognition ratio. In order to validate our algorithm in various realistic environments, the experiments are repeatedly performed by changing the tilt of paving blocks and the brightness in surrounding area. The results show that our algorithm performs sufficiently well to be exploited as a path finding system for visually handicapped persons.

A Study on Mobile Robot for Posture Control of Flexible Structures Using PI Algorithm

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, we propose a method for moving a device such as a flexible air sculpture while stably maintaining the user's desired posture. To accomplish this, a robot system with a structure of a mobile robot capable of running according to a given trajectory was studied by applying the PI algorithm and horizontal maintenance posture control using IMU. The air sculptures used in this study often use thin strings in a fixed posture. Another method is to put a load on the center of gravity to maintain the posture, and it is a system with flexibility because it uses air pressure. It is expected that these structures can achieve various results by combining flexible structures and mobile robots through the convergence process of digital sensor technology. In this study, posture control was performed by fusion of the driving technology of AGV(Automatic Guided Vehicle),, a field of robot, and technologies applying various sensors. For verification, the given performance evaluation was performed through an accredited certification test, and its validity was verified through an experiment.

Research of Colonoscope Robot With Rotary Inertia Type Locomotion Mechanism (회전관성형 주행 메커니즘을 가진 내시경 로봇의 연구)

  • Lee, Jaewoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.521-526
    • /
    • 2016
  • This paper suggests a new design that makes use of rotary inertia that can allow autonomous movement of an autonomous colonoscope robot in the colon of a patient as a locomotive mechanism. As commercial colonoscopy causes a lengthy time of pain and discomfort to the patients when colonoscopy patients are reluctant to receive surgery, there is a tendency to avoid the test in the early diagnosis of colorectal cancer. To solve this problem, research has been conducted on the next generation of robotic colonoscopes that can reduce the discomfort and pain by moving autonomously within the colon of the patients. In the driving mechanism utilizing the rotational inertia, a flywheel is driven by a motor to store energy and produce rotational inertia. By the energy stored and released by the flywheel, the stick phenomenon that occurs when the robot is running in the intestine can be overcome effectively. To do this, a controller that can control the velocity of the flywheel and is robust to high frequency noise was designed and implemented. The driving mechanism using the rotational inertia presented here showed that the structure is also effective and the experiment can be run easily compared to another mechanism.

Control Algorithm for Stable Galloping of Quadruped Robots on Irregular Surfaces (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • This paper proposes a control algorithm for quadruped robots moving on irregularly sloped uneven surfaces. Since the body balance of a quadruped robot is controlled by the forces acting on its feet during touchdown, the ground reaction force (GRF) is controlled for stable running. The desired GRF for each foot is generated on the basis of the desired galloping pattern; this GRF is then compared with the actual contact force. The difference between the two forces is used to modify the foot trajectory. The desired force is realized by considering a combination of the rate change of the angular and linear momenta at flight. Then, the amplitude of the GRF to be applied at each foot in order to achieve the desired linear and angular momenta is determined by fuzzy logic. Dynamic simulations of galloping motion were performed using RecurDyn; these simulations show that the proposed control method can be used to achieve stable galloping for a quadruped robot on irregularly sloped uneven surfaces.

Development of a Simulator for Off-Line Programming of Gantry-Robot Welding System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kwon Son;Park, Jae-Won;Jung, Chang-Wook;Kim, Hyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.517-517
    • /
    • 2000
  • Welding automation is one of the most important manufacturing issues in shipbuilding in order to lower the cost, increase the quality, and avoid the labor problems. Generally the on-line teaching is utilized on the robot that is used in the welding automation system, but it requires much effort and long time to program. Especially, if the system is composed of more than two cooperating robots, it demands much more skill to program the robots' motion. Thus, a convenient programming tool is required for efficient utilization of welding automation system. In this study, a convenient programming tool is developed for welding automation in which gantry-robot system is used. The system is composed of a gantry transporter and two robots mounted on the gantry to cover the wide work range in the ship building application. As a programming tool, an off-line programming software based on PC is developed. By using this software, field operator does not need to concern about coding of task programs for three control units, one is for gantry and two are for robots. The task programs are automatically generated by assembling the program modules in database according to geometrical information of workpiece and welding condition, which become the only concern of field operator, The feasibility of the generated programs can be verified via a motion simulator previously to on-line running.

  • PDF

AC Servo Motor Controller for Driving Cartesian Coordinate Type Robot Using Neural Networks (신경회로망을 이용한 평면 좌표계형 로봇구동용 교류서보전동기 제어기)

  • 김평호;서진연;김대곤;이강연;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.14-17
    • /
    • 1999
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that PI control using neural networks by 80196 can control efficiently speed of AC Servo motor. Finally experimental results prove excellent performance of this control system. The system can be adaptable to CNC machine.

  • PDF