• Title/Summary/Keyword: runner design

검색결과 178건 처리시간 0.031초

2.5 kW 급 프로펠러형 마이크로 수차 개발 (Development of 2.5 kW Class Propeller Type Micro Hydraulic Turbine)

  • 마상범;김성;최영석;차동안;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.314-321
    • /
    • 2020
  • In this work, a preliminary design of an inlet guide vane and runner for developing a 2.5 kW hydraulic turbine was conducted by using computational fluid dynamic analysis. Three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used to analyze the fluid flow in the hydraulic turbine. The hexahedral grid system was used to construct computational domain, and the grid dependency test was performed to obtain the optimal grid system. Velocity triangle diagram considering the flow angles of the inlet guide vane and runner was analyzed to obtain a basic geometry of the inlet guide vane and runner. Through modification of the preliminary design, the hydraulic performances of the turbine have improved under overall drop conditions. Especially, the efficiency and power of the turbine increased by 0.95% and 1.45%, respectively, compared to those of the reference model.

Design of Runner Game using Overlap Circle in Unity3D

  • Kim, Hyun-Jun;Kim, Soo Kyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권8호
    • /
    • pp.25-30
    • /
    • 2018
  • In this paper, we design a 2D one touch runner game which controls on smart device easily using a Unity3D game engine. Unity is the creator of the world's widely-used 2D and the 3D cross-platform game engine developed by Unity Technologies. Also, Unity builds high-quality 2D and 3D games on a various hardware device. This paper shows the familiar character as a cartoon and feels to enjoy using platformer with various game users. we show that the proposed platformer method improve controlling game path on the smart device.

미소 렌즈가 내재화된 이중사출 성형제품의 웰드라인 최소화 (Minimization of Weld Lines in Two Shot Molded Parts with Microlenses)

  • 신주경;민병권;김영주;강신일
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.230-235
    • /
    • 2004
  • A new design based on the appropriate geometry of molded part and type of runner system under the optimal processing conditions was proposed to minimize the micro weld lines on the sub deco surface molded by two shot molding. Theoretical and experimental studies were conducted to examine the cause of the weld lines during the overmolding process in two shot molding. Various dimensions and geometries of substrate$(1^{st}shot)$ and the wall thickness of overmold$(2^{nd}shot)$ have been proposed to avoid the weld lines which are the most inevitable appearance defects occurred on the sub deco. The each design proposal was analyzed by mold flow analysis after part modeling. The analysis results were compared with molded part from mass production tool. It could be seen that from the analysis that the proper geometry of plastic part and type of runner system considering pressure drop under the optimal processing conditions were the most influential factors to avoid weld lines occured on the sub deco.

CFD를 이용한 축류 유체 터빈 설계: 블레이드 수에 따른 성능 연구 (DESIGN OF AXIAL FLOW HYDRAULIC TURBINE USING CFD APPROACH: STUDY OF TURBINE PERFORMANCE ACCORDING TO THE NUMBER OF RUNNER BLADE)

  • 임형섭;김성완;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.561-566
    • /
    • 2011
  • In this paper, 1-D design of axial flow hydraulic turbine including runner blades, spiral casing with distributors(guide vanes and stay vane), and draft tube was conducted and then 3-D flow analysis was carried out using CFX-12.1. The results of 3 runners showed that with an increase in the number of blades, the flow rate and the power of the turbine system increased. On the other hand. the runner loss was not directly connected with the number of blades. As a result, proper blade number could be selected and more than 100kW small hydraulic turbine could be designed.

  • PDF

편측분기형 러너 금형에서 가스사출 성형변수가 성형품의 중공부 길이 변화에 미치는 영향 (The Effects of the GAIM Process Variables on the Penetration-Length Variations in a Unary Branch Type Runner Mold)

  • 한성렬;박태원;정영득
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.137-142
    • /
    • 2005
  • Gas-Assisted Injection Molding(GAIM) is an innovative technology for producing plastic parts and has been received extensive attention in the plastic manufacturing industries. But, due to gas-polymer interacting during the gas injection phase, the process has significantly different characteristics from conventional injection molding and, therefore, the control of the process requires much technical knowledge in processing and materials. The experiment was performed about variations of gas-penetration length that is affected by filling imbalance resulting from the structure of runner. The Taguchi method was used for the design of experiment. The most effective factors for the gas-penetration length were the shot size and mold temperature. The most effective factors for the difference of the gas-penetration length were the melt temperature and shot size. This study also discussed the filling imbalance phenomenon in a unary branch runner type mold that has geometrically balanced runner.

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Effects of load variation on a Kaplan turbine runner

  • Amiri, K.;Mulu, B.;Cervantes, M.J.;Raisee, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.182-193
    • /
    • 2016
  • Introduction of intermittent electricity production systems like wind and solar power to electricity market together with the deregulation of electricity markets resulted in numerous start/stops, load variations and off-design operation of water turbines. Hydraulic turbines suffer from the varying loads exerted on their stationary and rotating parts during load variations since they are not designed for such operating conditions. Investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of a rotating vortex rope (RVR) in the draft tube. The RVR induces pressure pulsations in the axial and rotating directions called plunging and rotating modes, respectively. This results in oscillating forces with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. This study investigates the effect of transient operations on the pressure fluctuations exerted on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors for this purpose. The model was run in off-cam mode during different load variations. The results showed that the transients between the best efficiency point and the high load occurs in a smooth way. However, during transitions to the part load a RVR forms in the draft tube which induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode. Formation of the RVR during the load rejections coincides with sudden pressure change on the runner while its mitigation occurs in a smooth way.

Simulations of the Dynamic Load in a Francis Runner based on measurements of Grid Frequency Variations

  • Ellingsen, Rakel;Storli, Pal-Tore
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.102-112
    • /
    • 2015
  • In the Nordic grid, a trend observed the recent years is the increase in grid frequency variations, which means the frequency is outside the normal range (49.9-50.1 Hz) more often. Variations in the grid frequency leads to changes in the speed of rotation of all the turbines connected to the grid, since the speed of rotation is closely related to the grid frequency for synchronous generators. When the speed of rotation changes, this implies that the net torque acting on the rotating masses are changed, and the material of the turbine runners must withstand these changes in torque. Frequency variations thus leads to torque oscillations in the turbine, which become dynamical loads that the runner must be able to withstand. Several new Francis runners have recently experienced cracks in the runner blades due to fatigue, obviously due to the runner design not taking into account the actual loads on the runner. In this paper, the torque oscillations and dynamic loads due to the variations in grid frequency are simulated in a 1D MATLAB program, and measured grid frequency is used as input to the simulation program. The maximum increase and decrease in the grid frequency over a 440 seconds interval have been investigated, in addition to an extreme event where the frequency decreased far below the normal range within a few seconds. The dynamic loading originating from grid frequency variations is qualitatively found by a constructed variable $T_{stress}$, and for the simulations presented here the variations in $T_{stress}$ are found to be around 3 % of the mean value, which is a relatively small dynamic load. The important thing to remember is that these dynamic loads come in addition to all other dynamic loads, like rotor-stator interaction and draft tube surges, and should be included in the design process, if not found to be negligible.

A Study on the Design of Gating System for Semi-Solid Diecasting Process

  • Park, Chul-Woo;Kim, Young-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.39-48
    • /
    • 2003
  • In the Semi-Solid Diecasters design, a Seni-Solid Diecasters experiment has usually been carried out before producing new casts. At the Semi-Solid Diecasting stages, the runner-gate part has been always repeatedly corrected, which leads to a tedious processing time and high processing cost. Much experience is essential in manual assessment and if the design is defective, much time and a great deal of efforts will be wasted in the modification of the die. In this study, a design system has been developed based on the design database In addition, a gate experiment for the gating system design has been tarried out to append the database. It is possible for engineers to make efficient gating system design of Semi-Solid Diecasting and it will result in the reduction of expenses and time to be required.

가솔린 엔진의 성능, 연비, 배출 가스를 동시에 고려한 시뮬레이션 기반 흡기 다기관 길이 최적화 (Simulation-based Intake Manifold Runner Length Optimization for Improving Performance, Fuel Consumption and Emission of a Gasoline Engine)

  • 강용헌;최동훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.62-67
    • /
    • 2010
  • Exhausting fossil fuel and increasing concern of air pollution have brought on the change of the focus of developing new vehicles from performance to fuel economy and emission. The gasoline engines adopting the naturally aspirated way use the throttle-body for engine load control. Therefore, its pumping loss increases more than that of the diesel engine, and also mostly operating in a partial load condition has bad influence on fuel economy and emission. In these days, the continuous variable valve timing system and variable induction system are adopted in order to improve fuel consumption and emission. In this study, we optimize the runner length and operate region of variable induction system to simulataneously improve the performance, fuel economy, and emission of gasoline engine with employing GT-Power as a CAE tool for engine analysis and PIAnO as PIDO tool for process integration and design optimization.