• Title/Summary/Keyword: ruminal volatile fatty acid(VFA)

Search Result 55, Processing Time 0.026 seconds

The Nutritive Values and Manufacture of Total Mixed Fermentation Feeds using Green Forage Crops and RiCE-straw (청예 사료작물과 볏짚을 이용한 완전배합발효사료의 제조와 영양적가치)

  • Lee, H.J.;Cho, K.K.;Kim, W.H.;Kim, Hyeon-Seop;Kim, J.S.;Hang, S.H.;Woo, J.H.;Lee, H.G.;Choi, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • Adequate forage amounts in ruminant animal are necessary for proper ruminal function in dairy cow. This study was carried out to determine the effect of total mixed fermentation feeds made by different green forage crops and grain processings on chemical compositions, RFV (relative feed value) and ruminal characteristics in sheep. The experiment was arranged in a split plot design with 4 replications. The main plot consisted of 6 kinds of green forages (corn, grass, rye, rape, alfalfa and oat) and the sub plots three different grain processings such as non-milling, half milling (7mm mesh over), and regular milling (7mm mesh below). And the different TMFFs (total mixed fermentation feeds) were analyzed for chemical composition and fed to 8 ruminally fistulated sheep for ruminal charactics and palatability. RFV, daily feed intake, acetate/propionate ratio of the rape-TMFFs were higher compared with the other treatment. Ruminal content of VFA (volatile fatty acid) of corn-TMFF was highest as 90.19 mmol% and pH of the feed was lowest as 3.82. But, acetic acid, propionic acid and butyric acid were no difference among treatments. In conclusion, the effect of grain proceeding was not appeared but if consider of only RFV, palatability and dry matter disappearance, grade of TMFF was improved in order of rape-, corn-, alfalfa-, grass-, oat- and rye-TMFF.

Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

  • Gunun, P.;Wanapat, M.;Anantasook, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1689-1697
    • /
    • 2013
  • This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen ($NH_3$-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers.

Replacing Concentrate with Wheat Straw Treated with Urea Molasses and Ensiled with Manure: Effects on Ruminal Characteristics, In situ Digestion Kinetics and Nitrogen Metabolism of Nili-Ravi Buffalo Bulls

  • Hassan, Z.;Nisa, M.;Shahzad, M.A.;Sarwar, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1092-1099
    • /
    • 2011
  • To evaluate the effects of replacing concentrate with urea molasses treated fermented wheat straw (FWS) ensiled with cattle manure (CM) on ruminal characteristics, in situ digestion kinetics and nitrogen (N) metabolism was studied in Nili Ravi cannulated buffalo bulls in a $4{\times}4$ Latin Square Design. Wheat straw treated with urea (4%) and molasses (6%) was ensiled with cattle manure (CM) (70:30) and fermented for 40 days. Four iso-nitrogenous and iso-caloric diets were formulated. In the FWS0, FWS10, FWS20 and FWS30 diets 0, 10, 20 and 30% of the concentrate was replaced with FWS, respectively. Daily intake by bulls was restricted to 1.5% dry matter (DM) of body weight. Ruminal ammonia nitrogen concentration was greater (p<0.05) in bulls fed FWS diet than for those fed FWS0 diet at 3, 6, 9 and 12 h post-parandial. Bulls fed FWS 20 and FWS 30 diets had higher ruminal pH at 3 and 6 h post-parandial than bulls fed FWS10 and FWS0. Ruminal total volatile fatty acid (VFA) concentrations 3 h post-parandial were greater (p<0.05) in bulls fed FWS0 than those fed FWS diets. However ruminal VFA tended to increase at 6, 9 and 12 h post-parandial as the level of FWS increased. In situ ruminal DM and neutral detergent fiber (NDF) degradation, rates of disappearance and extent of digestion were higher (p<0.05) for bulls fed FWS30 diet than those fed FWS0. Ruminal DM and NDF lag time tended to decrease (p<0.05) as FWS concentration in the diet increased. Feed intake, nitrogen intake, N-balance and blood urea-N did not differ (p>0.05) in buffalo bulls fed different diets. Wheat straw treated with urea and molasses and ensiled with CM enhanced the nutritive value of wheat straw and improved nutrient utilization in buffalo bulls when up to 30% of the concentrate was replaced with FWS; no adverse effects on ruminal characteristics and nutrients digestibilities were detected.

Effects of Replacing Lucerne (Medicago sativa L.) Hay with Fresh Citrus Pulp on Ruminal Fermentation and Ewe Performance

  • Sparkes, J.L.;Chaves, A.V.;Fung, Y.T.E.;van Ekris, I.;Bush, R.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • Two studies were conducted to determine the effects of replacing 30% (% in diet DM) of lucerne (Medicago sativa L.) hay with citrus pulp in Merino ewe diets: i) an in vitro study which measured ruminal fermentation; and ii) an in vivo study in which twelve Merino ewes pre- and post-lambing were fed experimental diets in a cross-over design over 120 days to evaluate effects on ewe performance (i.e. DM intake, average daily gain (ADG) and wool growth). In both the in vitro and in vivo studies, the control treatment consisted of lucerne (91.3% in diet DM), lupins (8.3% in diet DM) and phosphate (0.42% in diet DM), while the citrus pulp treatment consisted of lucerne (57.7% in diet DM), lupins (9.5% in diet DM), phosphate (0.48% in diet DM) and fresh citrus pulp (32.3% in diet DM). Data were analysed using the mixed model procedure of SAS. In the in vitro study, gas production, total volatile fatty acid (VFA) yield, proportion of propionic acid to total VFA and in vitro dry matter digestibility (IVDMD) were higher (p<0.02) in the citrus pulp treatment compared to the control treatment. In contrast, in vitro ammonia production, pH and the acetate to propionate ratio were lower (p<0.03) for the citrus pulp treatment compared to the control treatment. In the in vivo study, DM intake of ewes fed the citrus pulp diet was lower than their control ewe counterparts throughout both the pre- and post-lambing periods (928.9 vs. 1,115.0 g/d pre-; 1,285.0 vs. 1,620.3 g/d post-lambing, p<0.01), however ADG was similar (p = 0.12). Wool growth parameters and lamb performance did not differ (p>0.32) between treatments. In summary, the in vitro study demonstrated that the replacement of 30% of a lucerne diet with fresh citrus pulp improved total VFA yield, increased total gas production and improved IVDMD, while decreasing the production of ammonia, acetic acid and rumen pH. In addition, the in vivo study demonstrated that the replacement of 30% of a lucerne diet with fresh citrus pulp pre- and post-lambing decreased intake but did not affect ewe performance in terms of ADG and wool growth. These findings, of course, would be of significant interest to sheep producers endeavouring to control cost of feed ingredients whilst maintaining productivity.

Effect of Monensin and Live Yeast Supplementation on Growth Performance, Nutrient Digestibility, Carcass Characteristics and Ruminal Fermentation Parameters in Lambs Fed Steam-flaked Corn-based Diets

  • Ding, J.;Zhou, Z.M.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.547-554
    • /
    • 2008
  • In performance, digestibility and slaughter trials, a total of forty five male weaned lambs were used to examine the effects of monensin and live yeast supplementations on growth performance, nutrient digestibility, carcass characteristics and ruminal fermentation parameters when the lambs were fed steam-flaked corn-based diets. Animals were allotted to one of three treatment diets in a completely randomized design. The three treatment diets were: (1) basal diet (CON) with steam-flaked corn as a sole grain source, (2) basal diet supplemented with monensin (MO), and (3) basal diet supplemented with live yeast (LY). Total average daily intake (ADI) was unaffected by MO and LY supplementations. LY supplementation increased (p<0.05) average daily gain (ADG) by 13.1% compared with the CON diet. Both MO and LY supplementations resulted in a significant improvement (p<0.05) of feed efficiency over the CON diet (4.47, 4.68 vs. 5.05). Hemicellulose digestibility was higher (p<0.05) for lambs in the LY supplementation group (62.4%) as compared with the CON group (55.7%), but no differences were observed in digestibilities of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF). All carcass traits were not influenced by dietary supplementations. Ruminal pH in lambs fed the LY supplemental diet was more stable than that with the CON diet (6.57 vs. 6.17). Neither MO nor LY supplementation influenced the concentration of ruminal ammonia-N and total volatile fatty acid (VFA), and molar percentages of individual VFA. Plasma urea-N concentration was decreased (p<0.05) by MO and LY supplementations, while plasma ${\beta}$-hydroxybutyrate (BHBA), glucose and other blood parameters were unaffected. In conclusion, while both MO and LY supplementations had a positive impact on feed efficiency and LY supplementation stabilized ruminal pH and improved fiber utilization, none of the supplements had the capacity to significantly enhance the carcass characteristics.

Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System

  • Kim, Eun Tae;Hwang, Hee Soon;Lee, Sang Min;Lee, Shin Ja;Lee, Il Dong;Lee, Su Kyoung;Oh, Da Som;Lim, Jung Hwa;Yoon, Ho Baek;Jeong, Ha Yeon;Im, Seok Ki;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1280-1286
    • /
    • 2016
  • This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Effects of Cynanchum Wilfordii Extract on In vitro Ruminal Fermentation Characteristics and Methane Production (백하수오 추출물이 In vitro 반추위 발효성상 및 메탄가스 생성에 미치는 영향)

  • Yang, Seung-Hak;Lim, Joung-Soo;Kim, Byul;Hwang, Ok-Hwa;Cho, Sung-Back;Choi, Dong-Yoon;Choi, Seok-Geun;Hwang, Seong-Gu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2013
  • The objective of this study is to investigate the effects of Cynanchum wilfordii (CW) on cell viability, anti-oxidant activity, volatile fatty acid (VFA) production and methane gas production. Collected rumen fluid incubated with CW powder (1% w/v) for 12 and 24 hours were analyzed for pH, VFAs and methane. Alamar blue assay showed no significant difference on the viability of 3T3-L1 and C2C12 cells treated with CW for 24 hours. TBARS data showed a dose dependent increase on the antioxidant activity of CW. VFAs increased in the CW-treated groups compared to the control group. In addition, propionate increased more than other VFAs by the treatment with CW. There was a significant decrease in methane gas production in batch culture treated with CW in 12hrs. In conclusion, it was suggested that Cynanchum wilfordii could manipulate rumen fermentation considered by increasing VFA production and inhibition of methanogenesis.

Influence of Temperature and pH on Fermentation Pattern and Methane Production in the Rumen Simulating Fermenter (RUSITEC)

  • Bhatta, R.;Tajima, K.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • An experiment was conducted to study the effect of temperature and pH on in vitro nutrient degradability, volatile fatty acid profile and methane production. The fermenter used was the semi-continuous system, known as the rumen simulation technique (RUSITEC). Sixteen cylinders were used at one time with a volume of 800 ml, the dilution rate was set at 3.5%/hour, the infused buffer being McDougall's artificial saliva. Basal diet (9.6 g DM) used in RUSITEC consisted of (DM) 6.40 g Timothy hay, 1.86 g crushed corn and 1.34 g soybean meal. The food for the fermentation vessel was provided in nylon bags, which were gently agitated in the liquid phase. The experiment lasted for 17 d with all the samples taken during the last 5 d. Treatments were allocated at random to four vessels each and were (1) two temperature levels of $39^{\circ}C$ and $41^{\circ}C$ (2) two pH levels of 6.0 and 7.0. The total diet contained ($g\;kg^{-1}$ DM) 957 OM, 115 CP and $167MJ\;kg^{-1}$ (DM) GE. Although increase in temperature from $39^{\circ}C$ to $41^{\circ}C$ reduced degradation of major nutrients in vitro, it was non-significant. Interaction effect of temperature with pH also reflected a similar trend. However, pH showed a significant (p<0.05) negative effect on the degradability of all the nutrients in vitro. Altering the in vitro pH from 7 to 6 caused marked reduction in DMD from 60.2 to 41.8, CPD from 76.3 to 55.3 and GED from 55.3 to 35.1, respectively. Low pH (6) depressed total VFA production (61.9 vs. 34.9 mM) as well as acetate to propionate ratio in vitro (from 2.0 to 1.5) when compared to pH 7. Compared to pH 7, total gas production decreased from 1,841 ml to 1,148 ml at pH 6, $CO_2$ and $CH_4$ production also reduced from 639 to 260 ml and 138 to 45 ml, respectively. This study supported the premise that pH is one of the principal factors affecting the microbial production of volatile fatty acids and gas. Regulating the ruminal pH to increase bacterial activity may be one of the methods to optimize VFA production, reduce methane and, possibly, improve animal performance.

Effect of Replacing Rolled Corn with Potato Pulp Silage in Grass Silage-based Diets on Nitrogen Utilization by Steers

  • Aibibula, Y.;Okine, A.;Hanada, M.;Murata, S.;Okamoto, M.;Goto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1215-1221
    • /
    • 2007
  • Three Holstein steers fitted with ruminal and duodenal cannulae were fed grass silage-based diets supplemented with potato pulp silage as a substitute for rolled corn at levels of 0%, 50% and 100% on a DM basis in a $3{\times}3$ Latin square design to investigate the effect of potato pulp silage on nitrogen (N) utilization in ruminants. Organic matter (OM) intake, and rumen and total tract digestibilities did not differ among treatment diets. Rumen and post-rumen starch digestibilities were similar among treatments, although starch intake decreased (p<0.01) with potato pulp supplementation. There were no significant differences (p>0.05) in ruminal N utilization and non-ammonia N supply to the duodenum of steers fed grass silage supplemented with potato pulp silage as a substitute for rolled corn. There were no treatment differences (p>0.05) in rumen pH, volatile fatty acid (VFA) concentration or the molar percentages of acetate and propionate. The ammonia-N concentration in rumen fluid tended to decrease (p<0.1) when rolled corn was substituted with potato pulp silage. Ether extract intake and post-ruminal digestibility significantly (p<0.01) decreased in steers fed diets containing potato pulp silage. Concentrations of total cholesterol and phospholipids in serum markedly decreased (p<0.01) with potato pulp silage supplementation without adversely affecting liver function. These data suggested that potato pulp silage has a similar value as rolled corn as an energy source for rumen microorganisms.