• Title/Summary/Keyword: ruminal pH

Search Result 430, Processing Time 0.045 seconds

Changes of Microbial Population in the Rumen of Dairy Steers as Influenced by Plant Containing Tannins and Saponins and Roughage to Concentrate Ratio

  • Anantasook, N.;Wanapat, M.;Cherdthong, A.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1583-1591
    • /
    • 2013
  • The objective of this study was to investigate microbial population in the rumen of dairy steers as influenced by supplementing with dietary condensed tannins and saponins and different roughage to concentrate ratios. Four, rumen fistulated dairy steers (Bos indicus) were used in a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The main factors were two roughage to concentrate ratios (R:C, 60:40 and 40:60) and two supplementations of rain tree pod meal (RPM) (0 and 60 g/kg of total DM intake). Chopped 30 g/kg urea treated rice straw was used as a roughage source. All animals received feed according to respective R:C ratios at 25 g/kg body weight. The RPM contained crude tannins and saponins at 84 and 143 g/kg of DM, respectively. It was found that ruminal pH decreased while ruminal temperature increased by a higher concentrate ratio (R:C 40:60) (p<0.05). In contrast, total bacterial, Ruminococus albus and viable proteolytic bacteria were not affected by dietary supplementation. Numbers of fungi, cellulolytic bacteria, Fibrobactor succinogenes and Ruminococus flavefaciens were higher while amylolytic bacteria was lower when steers were fed at 400 g/kg of concentrate. The population of Fibrobactor succinogenes, was found to be higher with RPM supplementation. In addition, the use of real-time PCR technique indicated that the population of protozoa and methanogens were decreased (p<0.05) with supplementation of RPM and with an increasing concentrate ratio. Supplementation of RPM and feeding different concentrate ratios resulted in changing the rumen microbes especially, when the animals were fed at 600 g/kg of concentrate and supplemented with RPM which significantly reduced the protozoa and methanogens population.

A study on comparative feeding value of corn flakes according to temperature and retention time in the pressurized steam chamber

  • Ahn, Jun Sang;Shin, Jung Suh;Kim, Min Ji;Son, Gi Hwal;Kwon, Eung Gi;Shim, Jae Yoon;Kim, Il Young;Cho, Sung Myoun;Cho, Sang Rae;Park, Byung Ki
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.170-181
    • /
    • 2019
  • This study aimed to investigate the effects of temperature and retention time of the pressurized steam chamber on the ruminal fermentation characteristics and nutrient degradability of corn flakes in three Korean native Hanwoo cows and three Holstein cows implanted with a ruminal fistula. Corn kernels were categorized into 13 groups based on the chamber temperature (range, $100^{\circ}C-116^{\circ}C$) and retention time (range, 700-950 s). The pH value was lowest in T1 regardless of breed. Propionate concentration was the highest in T2 (p < 0.05). Total-volatile fatty acid (VFA) concentration was slightly but not significantly greater in T2 than in other conditions. Dry matter (p < 0.05), starch, and crude protein (p < 0.05) degradability were the highest in T1. At different incubation times and with different breeds, dry matter, starch, and crude protein degradability of corn flakes were the highest in T1. Thus, the present results indicate that the optimal temperature and retention time of the pressurized steam chamber should be $100^{\circ}C-105^{\circ}C$ and 700-720 s.

Estimation of Availability and TDN of Various Silages by Cattle (소에 의한 다양한 사일리지의 이용율 및 TDN 평가)

  • Ji, Byung-Ju;Jin, Guang-Lin;Shinekhuu, Judder;Qin, Wei-Ze;Oh, Young-Kyoon;Sohn, Yong-Suk;Seo, Sung;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.169-178
    • /
    • 2010
  • The present study was conducted with four ruminally fistulated cattle to examine the fermentation characteristics and effective degradability (ED) in the rumen, and whole tract digestibility and TDN values of various silages (whole crop rye, RS; whole crop barley, BS; Italian ryegrass, IRGS and sudangrass, SGS) which were produced in Korea. The pH of rumen fluid were not greatly affected by silage at most times after feeding but SGS decreased (p<0.049) the ruminal ammonia-N concentration as 7.28 mg/100 ml at 3h after feeding compared to other silages. An acetate proportion from SGS feeding was higher at 1h (p<0.018), 3h (p<0.004) and 6h (p<0.019) after feeding than those from other silages. The propionate ($C_2$) proportion, however, was greater (p<0.001~p<0.042) for the RS and BS than the corresponding values of other silages up to 6h after feeding while the lowest $C_2$ proportion was observed from SGS. The butyrate proportion was lowest (p<0.007~p<0.027) in the cattle fed BS at 1~6h after feeding among silages. An ED of dry matter (DM) in the rumen was highest (P<0.048) for RS as 59.64%, and was reduced in the order of BS (56.12%), IRGS (55.64%) and SGS (54.02%). Similar tendency was observed in the EDs of crude protein (p<0.014) and organic matter (OM, p<0.039). The whole tract digestibility of DM (p<0.032), neutral detergent fiber (NDF, p<0.034) and OM (p<0.041) of SGS was greatly reduced. The TDN value based on whole tract digestibility of silages was highest for RS as 61.1%, and TDN values of BS, IRGS and SGS were 57.1%, 57.9% and 50.7%, respectively. Based on the results obtained from the present study, components in various whole crop silages produced in Korea might affect the ruminal VFA proportion, and especially, NDF content could greatly influence on the TDN value of silage calculated based on the NDF content.

Nutrient Utilization of Broiler Litter and Bakery By-product Ration in Sheep (육계분-제과부산물 발효 완전혼합사료(TMR)의 면양 체내에서의 영양소 이용성 평가)

  • Kwak, W.S.;Yoon, J.S.;Jung, K.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.607-616
    • /
    • 2003
  • This study was conducted to determine the effect of feeding a total mixed ration(TMR) of broiler litter(BL) and bakery by-product(BB) with additional BL or rice straw incorporated at 10% of dietary DM as a roughage source on behavior pattern, nutrient intake, digestibility, digestible nutrient intake, ruminal and blood parameters, and N balance of sheep. All the treatment diets were formulated to be isoenergetic[total digestible nutrients(TDN) 66.9%]. Compared with the conventional formulated feed - rice straw feeding system(control), feeding TMR with BL(T1) or rice straw(T2) at 10% of dietary DM resulted in reduced eating, ruminating and total chewing time(P<0.05), similar DM intake, low(P<0.05) digestible DM, OM, fiber and total nutrients intake, low(P<0.05) nutrients digestibilities except EE, similar ruminal characteristics(pH, VFA concentrations and ratios, efficiency of carbohydrate fermentation, NH3-N), and favorable N digestion and retention. There were no differences in the above parameters between T1 and T2 with the exception of increased(P<0.05) eating, ruminating and total chewing time for T2. These results suggested that a TMR of BL and BB with or without rice straw may replace the conventional formulated feed and rice straw in ruminant diets successfully and furthermore feeding the TMR with rice straw made sheep behavior pattern more favorable.

Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds

  • Norrapoke, T.;Wanapat, M.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.971-979
    • /
    • 2012
  • Four, lactating dairy crossbreds ($50%{\times}50%$ Holstein Friesian${\times}$Native Zebu cattle) were randomly assigned according to a $2{\times}2$ factorial arrangement (two protein levels and two levels of mangosteen peel pellets (Mago-pel)) in a $4{\times}4$ Latin square design to receive four dietary treatments. All cows received concentrate at a proportion of 1 kg concentrate per 2 kg of milk yield, and urea-treated 5% rice straw (UTRS) was given ad libitum. It was found that total dry matter intakes, nutrient digestibility, ruminal pH and $NH_3$-N concentrations were not affected (p>0.05) by treatments. Concentrations of ruminal pH and $NH_3$-N were not affected by dietary treatments although the concentration of BUN varied significantly (p<0.05) between protein levels (p<0.05). The populations of rumen bacteria and fungal zoospores did not differ among treatments (p>0.05); however, the population of protozoa was decreased (p<0.05) when cows received Mago-pel supplementation. The composition of the population of bacteria, identified by real-time PCR technique, including total bacteria, methanogens, Fibrobacter succinogenes and Ruminococcus albus was similar (p>0.05) among dietary treatments (p>0.05); however, copy numbers of Ruminococcus flavefaciens was increased when protein level increased (p<0.05). Microbial protein synthesis, in terms of both quantity and efficiency, was enriched by Mago-pel supplementation. Milk yield was greatest in cows fed UTRS based diets with concentrate containing protein at 16% CP with Mago-pel, but were lowest without Mago-pel (p<0.05). In addition, protein level and supplementation of Mago-pel did not affect (p>0.05) milk composition except solids-not-fat which was higher in cows fed the diet with 19% CP. Therefore, feeding a concentrate containing 16% CP together with 300 g/hd/d Mago-pel supplementation results in changes in rumen fermentation and microbial population and improvements in milk production in lactating dairy crossbreds fed on UTRS.

Regulation of Fat and Fatty Acid Composition in Beef Cattle

  • Smith, Stephen B.;Gill, Clare A.;Lunt, David K.;Brooks, Matthew A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1225-1233
    • /
    • 2009
  • Fat composition of beef, taken here to mean marbling, can be manipulated by time on feed, finishing diet, and breed type. These three factors also strongly influence the fatty acid composition of beef. Both the amount of marbling and the concentration of monounsaturated fatty acids (MUFA) increase with time on feed in grain-fed and pasture-fed cattle, but much more dramatically in grain-fed cattle. High-concentrate diets stimulate the activity of adipose tissue stearoyl-CoA desaturase (SCD), which is responsible for the conversion of saturated fatty acids (SFA) to their $\Delta{9}$ desaturated counterparts. Also, grain feeding causes a depression in ruminal pH, which decreases those populations of ruminal microorganisms responsible for the isomerization and hydrogenation of polyunsaturated fatty acids (PUFA). The net result of elevated SCD activity in marbling adipose tissue and depressed ruminal isomerization/hydrogenation of dietary PUFA is a large increase in MUFA in beef over time. Conversely, pasture depresses both the accumulation of marbling and SCD activity, so that even though pasture feeding increases the relative concentration of PUFA in beef, it also increases SFA at the expense of MUFA. Wagyu and Hanwoo cattle accumulate large amounts of marbling and MUFA, and Wagyu cattle appear to be less sensitive to the effects of pastures in depressing overall rates of adipogenesis and the synthesis of MUFA in adipose tissues. There are small differences in fatty acid composition of beef from Bos indicus and Bos taurus cattle, but diet and time on feed are much more important determinants of beef fat content and fatty acid composition than breed type.

Treated Extruded Soybean Meal as a Source of Fat and Protein for Dairy Cows

  • Ure, A.L.;Dhiman, T.R.;Stern, M.D.;Olson, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.980-989
    • /
    • 2005
  • The influence of treated, extruded, partially expelled soybean meals as undegradable protein and bypass fat sources on lactation performance and ruminal fermentation of dairy cows was studied. Experiment 1: nine cows were used in a replicated 3${\times}$3 Latin square design with each period being 3 wk in duration. Cows were fed 440 g/kg forage and 560 g/kg grain diet with one of three extruded soybean meals fed at 110 g/kg of the diet. The 3 soybean meals were 1) twice-extruded soybean meal (ESM; as a control); 2) lignosulfonate-treated, twice-extruded soybean meal (LSM); and 3) calcium oxide plus lignosulfonate-treated, twice extruded soybean meal (CLSM). Experiment 2: 3 ruminally cannulated cows were used in a 3${\times}$3 Latin square to study the treatment influence on ruminal fermentation characteristics. Feeding treated soybean meal to cows in LSM and CLSM treatments did not improve feed intake, milk yield, or milk composition except that cows fed the LSM and CLSM treatments produced less milk protein compared with the ESM treatment. The proportion of $C_{18:2}$ was greater in milk fat of cows fed CLSM compared with that of cows fed the ESM or LSM treatments. Ruminal pH, ammonia, and total volatile fatty acids were not affected by treatment. An increased proportion of $C_{18:2}$ in milk fat suggests that there is a potential use of calcium salts of fatty acids in protecting the lipid portion of extruded soybean meal and further research is needed to explore this potential with full-fat extruded soybeans not with extruded and partially oil expelled soybeans.

Conjugated Linoleic Acid (CLA) Production in the Rumen -Roles of Butyrivibrio fibrisolvens A38

  • Kim, Dae-Ok;Kim, Tae-Wan;Heo, Ho-Jin;Imm, Jee-Young;Hwang, Han-Joon;Oh, Sejong;Kim, Young-Jun
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is currently under intensive investigation due to its health benefits. A great deal of interest has been paid to the possible health-promoting roles of CLA, but there are not many studies available on the mechanism of CLA production by ruminal microorganisms. CLA is produced as an intermediate of the characteristic biohydrogenation process of linoleic acid(LA) in the rumen and its production has direct relationship to numerous environmental factors including particle association, substrate concentration, forage-to-grain ratio, pH, ionopore, bacterial cell density, etc. Some of these factors were known to affect hydrogenating activities of Butyrivibrio fibrisolvens A38 which is an active rumen bacterium in CLA production. Dairy cow is a main source of CLA, and its level could be increased by dietary manipulation changing the physiological environment of rumen bacteria such as B. fibrisolvens A38. Therefore, the effects of various factors on. ruminal biohydrogenation should be carefully considered to optimize not only CLA production, but also other fatty acid metabolism, both of which are directly affecting nutritional quality and functionality of dairy products. In this review, the relationship between various environmental factors and ruminal CLA production is discussed focusing on the CLA production of B. fibrisolvens A38.

Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives

  • Majewska, Malgorzata P.;Miltko, Renata;Belzecki, Grzegorz;Kedzierska, Aneta;Kowalik, Barbara
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1146-1156
    • /
    • 2021
  • Objective: The aim of the study was to compare the effect of two plant additives, rich in polyphenolic compounds, supplemented to sheep diets on microorganisms and carbohydrate fermentation in rumen. Methods: In the experiment, 6 ewes of the Polish Mountain breed were fitted with ruminal cannulas. Sheep were divided into three feeding groups. The study was performed in a cross-over design of two animals in each group, with three experimental periods (n = 6 per each group). The animals were fed a control diet (CON) or additionally received 3 g of dry and milled lingonberry leaves (VVI) or oak bark (QUE). Additionally, plant material was analyzed for tannins concentration. Results: Regardless of sampling time, QUE diet increased the number of total protozoa, as well as Entodinium spp., Diplodinium spp. and Isotrichidae family, while decreased bacterial mass. In turn, a reduced number of Diplodinium spp. and increased Ophryoscolex spp. population were noted in VVI fed sheep. During whole sampling time (0, 2, 4, and 8 h), the number of protozoa in ruminal fluid of QUE sheep was gradually reduced as opposed to animals receiving CON and VVI diet, where rapid shifts in the protozoa number were observed. Moreover, supplementing sheep with QUE diet increased molar proportions of butyrate and isoacids in ruminal fluid. Unfortunately, none of the tested additives affected gas production. Conclusion: The addition of VVI or QUE in a small dose to sheep diets differently affected rumen microorganisms and fermentation parameters, probably because of various contribution of catechins in tested plant materials. However, it is stated that QUE diet seems to create more favorable conditions for growth and development of ciliates. Nonetheless, the results of the present study showed that VVI and QUE additives could serve as potential natural modulators of microorganism populations and, consequently, carbohydrate digestion in ruminants.

Effects of Supplementation of Ruminally Protected Amino Acids on In vitro Ruminal Parameters and Milk Yield and Milk Composition of Dairy Cows in Mid-lactation (보호아미노산의 추가 공급이 반추위 발효성상 및 비유중기 착유우의 유량 및 유성분에 미치는 영향)

  • Lee, Jong-Min;Nam, In-Sik;Ahn, Jong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • This study was undertaken to investigate the effects of ruminally protected amino acids (Methionine and Lysine) on in vitro ruminal parameters, and in vivo milk yield and milk composition in mid-lactating cows. In the first in vitro experiment, there were no statistical significances between treatments in ruminal pH and dry matter digestibility during various incubation times. In the second in vivo experiment, milk yield decreased by 11.92% in control and 5.68% in the treatment respectively, but decrease rate of milk yield in the treatment was lower than control. Milk yields naturally decreased as time goes by since the DIMs(Days in milk) of the cows in experiment were in mid-lactation period. 4% FCM(Fat corrected milk) and milk protein yields also, respectively, decreased by 11.25% and 11.09% in control and 6.16% and 5.47% in the treatment as compared with the intial. Milk protein and milk fat production were higher in the treatment(0.90kg, 1.10kg) than those of control(0.66kg, 0.79kg). Milk fat content significantly increased with supplementing protected amino acids as compared to control(P<0.05). From the above results, protected amino acids were positively utilized in the performances of mid-lactating cows without inhibiting rumen fermentation. Further investigation is suggested for essential amino acid composition and intestinal digestion rate out of rumen bypass protein in dietary protein to be estimated.