• Title/Summary/Keyword: ruminal fermentation characteristics

Search Result 157, Processing Time 0.025 seconds

Effects of Mustard Seeds and Powder on In vitro Ruminal Fermentation Characteristics and Methane Production (겨자종자와 겨자분의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Lee, Kang Yeon;Kim, Kyoung Hoon;Baek, Youl Chang;Ok, Ji Un;Seol, Yong Joo;Han, Ki Jun;Park, Keun Kyu;Ryu, Ho Tae;Lee, Sang Suk;Jeon, Che Ok;Oh, Young Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • The purpose of this study was to investigate the effects of mustard, which contains allyl isothiocyanate, on ruminal fermentation and methane emission in vitro. To this end, diluted ruminal fluid(30ml) was incubated anaerobically at $39^{\circ}C$ or 6, 12, and 24 h with or without seeds or powdered mustard. Either mustard seed or powdered mustard was weighed and serially (0, 3.33, 5.00, 6.67, and 8.33 g/L) mixed with ruminal fluid. Ammonia-N was increased (P < 0.05) by mustard treatment in a dose dependent manner. Regardless of concentration or form, mustard increased (P < 0.05) total VFA content but decreased (P < 0.01) pH compared to control group. Molar proportion of acetate (A) was decreased (P < 0.05) whereas propionate (P) was increased (P < 0.05) by mustard treatment, thereby A:P ratio was decreased (P < 0.05) compared to control group. Total gas production was increased (P < 0.01) in a linear manner by mustard treatment compared to control group. There was no effect of mustard powder, except 8.33 g/L level at 6 h, on methane emission. However, at 24 h, methane emission was reduced (P < 0.05) by 4.77% and 11.54% with 6.67 g/L and 8.33 g/L of mustard seeds supplementation, respectively. Altogether, these results suggest that mustard seeds containing allyl isothiocyanate may reduce methane production without disturbing ruminal fermentation.

Effects of Dietary Eucommia ulmoides Leaves on Nutrient Digestibility and Ruminal Fermentation Characteristics in Sheep (두충잎의 급여가 면양의 영양소 이용율과 반추위내 발효특성에 미치는 영향)

  • Kim, J.H.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.955-962
    • /
    • 2005
  • This study was conducted to examine the nutrient digestibility and ruminal fermentation characteristics in sheep fed diets containing four substitution levels of E. ulmoides leaves for rice straw. For the experiment, they were given a basal diet consisting of rice straw and concentrate at a 3:7 ratio (DM basis). The treatments were designed as a 4$\time$4 Latin square design with four sheep (50.2$\pm$1.6 kg body weight). Sheep were allotted in one of four treatments, which were designed to progressively substitute Eucommia ulmoides for 0, 3, 5 and 10% of rice straw in the basal diet. The digestibility of crude fat was significantly (p<0.05) improved by 12.5 to 17.5% in 3% and 5% air dried Eucommia ulmoides leaves compared with that in control. The digestibility of crude fiber in the 3, 5 and 10% treatments was significantly (p<0.05) higher than that of the control. Dry matter intake was highest (p<0.05) in sheep fed 10% air dried E. ulmoides). Retained nitrogen in the 3, 5 and 10% treatments was increased up to 97%, 173% and 192%, respectively, compared to that in control (p<0.05). Organic matter utilization was higer in 3% and 5% treatments than control (p<0.05). Purine derivatives and microbial nitrogen synthesis were significantly increased by the dietary substitution of 5 % E. ulmoides leaves (p<0.05) compared with control and the 3% treatment. Ruminal concentration of total-VFA was significantly (p<0.05) higher in sheep fed all levels of air dried Eucommia ulmoides than those of control. It is concluded that air-dried E. ulmoides leaves given to ruminants can increase nutrient digestibility and palatability and improve ruminal fermentation. Therefore, the 5 and 10% substitution of E. ulmoides for roughage are highly recommended to be used in practice.

Effects of Passtein® Supplements on Protein Degradability, Ruminal Fermentation and Nutrient Digestibility (패스틴®첨가가 단백질 분해율과 반추위 발효 및 영양소 소화율에 미치는 영향)

  • Choi, Y.J.;Choi, N.J.;Park, S.H.;Song, J.Y.;Um, J.S.;Ko, J.Y.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2002
  • This study, including two in vitro experiments and an in vivo experiment were conducted to evaluate effects of Passtein$^{(R)}$ on crude protein degradability, ruminal fermentation characteristics and nutrient digestibility. In in vitro experiment protein degradability was examined using borate-phosphate buffer and neutral detergent, and using protease from Stroptomyces griseus at 39$^{\circ}C$ for 0, 2, 4, 8, 12, and 48 h. In addition, an in vivo experiment was conducted in a switch back design and ruminal fermentation and nutrient digestibility were determined. Four ruminal-fistulated Holstein cows weighing 300kg in mean body weight randomly allotted to 2 treatments (control and Passtein$^{(R)}$ supplementation). Although there was no significant difference on protein fraction between treatments, it appears that Passtein$^{(R)}$ supplementation decreased buffer soluble protein fraction compared to control. Protein degradability was not affected by Passtein$^{(R)}$ from 0 h to 4 h, but decreased at 12 h and 48 h compared to control. Degradation of immediately degradable fraction was higher in Passtein$^{(R)}$ treatment, but degradation of fermentable fraction was lower in Passtein$^{(R)}$ treatment compared to control. The pH and $NH_3$-N concentration tended to increase in Passtein$^{(R)}$ treatment, but VFA production, microbial counts and enzyme activity tended to decrease in Passtein$^{(R)}$ treatment compared to control. In addition, nutrient digestibility in the total tract tended to increase in Passtein$^{(R)}$ treatment compared to control.

Studies on the Use of Wet Sorghum Distiller's Grains in Lactating Cows

  • Chiou, P.W.S.;Chang, S.H.;Chiang, J.K.;Yu, B.;Chen, C.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.895-900
    • /
    • 1999
  • The aim of this study was to evaluate the effect of incorporating wet sorghum distiller's grains (WSDG) as part of their diet on the lactating performance of dairy cows. Twenty-seven Holstein milking cows were selected, all in the early lactating stage, with an average weight of 550 kg, and producing an average of 30 kg of milk daily. The cows were divided into three groups according to milk yield and lactation and were fed different total mixed rations. The diets were formulated according to NRC (1989) recommendations in three rations to (1) control diet, (2) 15% WSDG diet and (3) 30% WSDG diet. The three different diets were all formulated as iso-nitrogen and iso-energetic diets. After one week adaptation period, the experimental feeding was conducted for 8 weeks. Three ruminal cannulated cows were also examined in order to investigate ruminal fermentation of the three total mixed rations. The results showed that the milk yield, as corrected to the 4.0% fat standard, had no significant difference among the control, 15% WSDG and 30% WSDG treatment groups (p>0.05). The daily dry matter intake of the control group was higher than the other groups (p<0.05). with respect to milk composition, milk fat, milk protein and total solids, there was no significant difference among the treatment groups (p>0.05). The energy efficiency of the 30% WSDG group were significantly higher than the other treatment groups (p<0.05). Ruminal pH value showed no difference among the treatment groups (p<0.05). Ammonia-nitrogen concentration in the control group was higher than the other treatment groups (p<0.05). The concentration of total ruminal volatile fatty acid was similar in all three dietary groups.

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

Evaluation of Feeding Value of Brown Rice in Korean Native Beef Steers (Hanwoo) (한우에 대한 현미의 사료가치 평가)

  • 오영균;김경훈;최창원;강수원;정일병;노환국
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.393-400
    • /
    • 2006
  • The present study was conducted to evaluate feeding value of brown rice in Korean native beef steers (Hanwoo) fed concentrates and orchardgrass hay (50:50 on a wet basis) as a basal diet. Either 50% or 100% of corn in concentrates was substituted for brown rice, and ruminal fermentation characteristics, in situ degradability of feeds and in vivo digestibility of concentrate were investigated. The digestibility and nutritive values of corn and brown rice feeds were similar, whereas rumen degradability of brown rice was higher than that of corn. Compared with corn-based diets, the brown rice substitution decreased (P<0.05) ruminal NH3-N concentration, but did not affect rumen pH. Total volatile fatty acid content in ruminal digesta for the corn based diet was higher than those for the brown rice-contained diets. The brown rice substitution increased (P<0.05) the ratio of ruminal acetic acid to propionic acid (A/P) compared with corn-contained diets.Present results indicate that corn might nutritionally be substituted for brown rice as cattle feeds. In addition, we expect that relatively high A/P with brown rice may produce affirmative effects in rumen physiological aspect, particularly under the grain based feeding system for beef cattle in Korea.

Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro

  • Yoo, Daekyum;Hamid, Muhammad Mahboob Ali;Kim, Hanbeen;Moon, Joonbeom;Song, Jaeyong;Lee, Seyoung;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.638-647
    • /
    • 2020
  • This study determined the substitution effects of rice for corn as the main grain source in a total mixed ration (TMR). In vitro rumen fermentation characteristics and microbes were assessed using two experimental diets. Diets included 33% dry matter (DM) of either corn (Corn TMR) or rice grains (Rice TMR). In a 48-h in vitro incubation, DM digestibility (IVDMD), neutral detergent fiber degradability (IVNDFD), crude protein digestibility (IVCPD), volatile fatty acids (VFAs), pH and ammonia nitrogen (NH3-N) were estimated. Gas production has been calculated at 3, 6, 12, 24 and 48 h. Our results indicate that the gas production, VFAs, IVDMD, and IVNDFD of Rice TMR were higher than those of Corn TMR (p < 0.05). Ruminal pH and total fungi were significantly higher in Corn TMR (p < 0.05) than in Rice TMR; however, NH3-N and IVCPD were not affected by treatment type. In conclusion, substituting rice for corn at 33% DM in TMR appears to have no negative effects on in vitro rumen fermentation characteristics. Therefore, rice grains are an appropriate alternative energy source in early fattening stage diets of beef cattle.

Effects of Lactic Acid Bacteria, Storage Temperature and Period on Fermentation Characteristics, and in vitro Ruminal Digestibility of a Total Mixed Ration

  • Suyeon Kim;Tabita Dameria Marbun;Kihwan Lee;Jaeyong Song;Jungsun Kang;Chanho Lee;Duhak Yoon;Chan Ho Kwon;Eun Joong Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.276-285
    • /
    • 2022
  • This study evaluated the effect of lactic acid bacteria (LAB, a mixture of Enterococcus faecium and Lactobacillus plantarum) supplementation, the storage temperature, and storage period on the fermentation characteristics and in vitro ruminal digestibility of a total mixed ration (TMR). The TMR was prepared into two groups, namely, CON (control TMR without the LAB) and ML (supplementing a mixture of E. faecium and L. plantarum in the ratio of 1% and 2% (v/w), respectively). Both groups were divided and stored at 4℃ or 25℃ for 3, 7, and 14 d fermentation periods. Supplementing LAB to the TMR did not affect the chemical composition of TMR except for the lactate and acetate concentration. Storage temperatures affected (p<0.05) the chemical composition of the TMR, including pH, lactate, and acetate contents. The chemical composition of TMR was also affected (p<0.05) by the storage period. During in vitro rumen fermentation study, the ML treatment showed lower (p<0.05) dry matter digestibility at 24 h incubation with a higher pH compared to the CON. There was no difference in the in vitro dry matter digestibility (IVDMD) of TMR between the CON and ML treatment however, at 24 h, ML treatment showed lower (p<0.05) IVDMD with a higher pH compared to the CON. The effects of storage temperature and period on IVDMD were not apparent at 24 h incubation. In an in vivo study using Holstein steers, supplementing LAB to the basal TMR for 60 d did not differ in the final body weight and average daily gain. Likewise, the fecal microbiota did not differ between CON and ML. However, the TMR used for the present study did include a commercial yeast in CON, whereas ML did not; therefore, results were, to some extent, compromised in examining the effect of LAB. In conclusion, storage temperature and period significantly affected the TMR quality, increasing acetate and lactate concentration. However, the actual effects of LAB supplementation were equivocal.