• Title/Summary/Keyword: ruminal fermentation characteristics

Search Result 157, Processing Time 0.024 seconds

Ruminal microbial responses in fermentation characteristics and dry matter degradability to TDN level of total mixed ration

  • Lee, Seung-Uk;Jo, Jin-Ho;Park, Sung-Kwon;Choi, Chang-Weon;Jeong, Jun;Chung, Ki-Young;Chang, Sun-Sik;Li, Xiang Zi;Choi, Seong-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • An in vitro trial was conducted to examine the effects of total mixed rations (TMR) on fermentation characteristics and effective degradability (ED) by rumen microbes. Three TMR diets were growing period TMR (GR-TMR, 67% TDN), early fattening period TMR (EF-TMR, 75.4% TDN) and late fattening TMR (LF-TMR, 80% TDN). Three TMR diets (3 g of TMRs in each incubation bottles) was added to the mixed culture solution of stained rumen fluid with artificial saliva (1:1, v/v) and incubated anaerobically for 48 hours at $39^{\circ}C$. The pH in all incubation solutions tended to decrease up to 48h, but the opposite results were found in concentration of total gas production, ammonia-N and total VFA in all incubations.The total gas production (p<0.05) in LF-TMR was highest compared with those of other diets. Also, concentration of total VFA was tended to increase in LF-TMR compared with other TMR diets in all incubations. The EDDM in both EF-TMR and LF-TMR was tended to high compared with GR-TMR (p=0.100). In this in vitro trials, concentration of propionate in all incubation solution was not affected by increased concentration of TDN. The results of the present in vitro study indicate that TMR may provide more favorable condition for nutrient digestion both in the rumen.

Effects of Supplementing Brown Seaweed By-products in the Diet of Holstein Cows during Transition on Ruminal Fermentation, Growth Performance and Endocrine Responses

  • Hong, Z.S.;Kim, E.J.;Jin, Y.C.;Lee, J.S.;Choi, Y.J.;Lee, H.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1296-1302
    • /
    • 2015
  • This study was conducted to examine the effects of supplementing brown seaweed by-products (BSB) in the diet of ruminants on ruminal fermentation characteristics, growth performance, endocrine response, and milk production in Holstein cows. In Experiment 1, the effects of different levels (0%, 2%, and 4% of basal diet as Control, 2% BSB, 4% BSB, respectively) of BSB were evaluated at 3, 6, 9, 12, and 24 h in vitro batch culture rumen fermentation. The pH tended to be higher for the higher level of BSB supplementation, with the pH at 12 h being significantly higher (p<0.05) than that of the control. The concentration of ammonia nitrogen was lower at 3, 9, 12, and 24 h incubation (p<0.05) compared with the control, and tended to be low at other incubation times. Volatile fatty acid concentration appeared to be minimally changed while lower values were observed with 4% BSB treatment at 24 h (p<0.05). In Experiment 2, effects of levels (0%, 2%, and 4%) of BSB on growth performance, endocrine responses and milk production were studied with Holstein dairy cows during transition. Dry matter intake, daily gain and feed efficiency were not affected by BSB supplementation. The concentration of plasma estrogen for the control, 2% BSB and 4% BSB after three months of pregnancy were 55.7, 94.1, and 72.3 pg/mL, respectively (p = 0.08). Although the differences of progesterone levels between BSB treatments and the control were minimal, the concentration in 4% BSB treatment increased to 157.7% compared with the initial level of the study. Triiodothyronine and thyroxine levels were also higher after both three months and eight months of pregnancy than the initial level at the beginning of the study. In addition, BSB treatments during one month after delivery did not affect daily milk yield and composition. In conclusion, the present results indicate that supplementation of BSB did not compromise ruminal fermentation, and animal performance at lower levels and hence may have potential to be used as a safe feed ingredient in dairy cows.

pH Affects the In vitro Formation of cis-9, trans-11 CLA and trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1743-1748
    • /
    • 2003
  • The effect of pH on the fermentation characteristics and the formation of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-11 octadecenoic acid by mixed ruminal bacteria was examined in vitro when incubated with linseed or rapeseed. Concentrate (1%, w/v) with ground linseed (0.6%, w/v) or rapeseed (0.5%, w/v) was added to 600 ml mixed solution of strained rumen fluid with artificial saliva (1:1, v/v), and was incubated anaerobically for 12 h at $39^{\circ}C$. The pH of culture solution was maintained at level close to 4.5, 5.3, 6.1 and 6.9 with 30% $H_2SO_4$ or 30% NaOH solution. pH increment resulted in increases of ammonia and total volatile fatty acid (VFA) concentration in culture solutions containing both oilseeds. Fermentation did not proceeded at pH 4.5. Molar proportion of acetate decreased but that of propionate increased as pH increased when incubated with oilseeds. While the hydrogenating process was very slow at the pH range of 4.5 to 5.3, rapid hydrogenation was found from the culture solutions of pH 6.1 and 6.9 when incubated with linseed or rapeseed. As pH in culture solution of linseed or rapeseed increases proportions of oleic acid (cis-9 $C_{18:1}$) and trans-11 octadecenoic acid increased but those of linoleic acid and linolenic acid decreased. The CLA proportion increased with pH in culture solution containing rapeseed but CLA was mostly not detected from the incubation of linseed.

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Treated Extruded Soybean Meal as a Source of Fat and Protein for Dairy Cows

  • Ure, A.L.;Dhiman, T.R.;Stern, M.D.;Olson, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.980-989
    • /
    • 2005
  • The influence of treated, extruded, partially expelled soybean meals as undegradable protein and bypass fat sources on lactation performance and ruminal fermentation of dairy cows was studied. Experiment 1: nine cows were used in a replicated 3${\times}$3 Latin square design with each period being 3 wk in duration. Cows were fed 440 g/kg forage and 560 g/kg grain diet with one of three extruded soybean meals fed at 110 g/kg of the diet. The 3 soybean meals were 1) twice-extruded soybean meal (ESM; as a control); 2) lignosulfonate-treated, twice-extruded soybean meal (LSM); and 3) calcium oxide plus lignosulfonate-treated, twice extruded soybean meal (CLSM). Experiment 2: 3 ruminally cannulated cows were used in a 3${\times}$3 Latin square to study the treatment influence on ruminal fermentation characteristics. Feeding treated soybean meal to cows in LSM and CLSM treatments did not improve feed intake, milk yield, or milk composition except that cows fed the LSM and CLSM treatments produced less milk protein compared with the ESM treatment. The proportion of $C_{18:2}$ was greater in milk fat of cows fed CLSM compared with that of cows fed the ESM or LSM treatments. Ruminal pH, ammonia, and total volatile fatty acids were not affected by treatment. An increased proportion of $C_{18:2}$ in milk fat suggests that there is a potential use of calcium salts of fatty acids in protecting the lipid portion of extruded soybean meal and further research is needed to explore this potential with full-fat extruded soybeans not with extruded and partially oil expelled soybeans.

Effects of Replacing Nonfiber Carbohydrates with Nonforage Detergent Fiber from Cassava Residues on Performance of Dairy Cows in the Tropics

  • Kanjanapruthipong, J.;Buatong, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.967-972
    • /
    • 2004
  • Four Holstein$\times$Indigenous cows with ruminal canulas were used in a 4$\times$4 Latin square design with 28 d periods to determine the effect of replacing nonforage fiber source (NFFS) from cassava residues for non-fiber carbohydrates (NFC) on ruminal fermentation characteristics and milk production. Dietary treatments contained 17% forage neutral detergent fiber (FNDF) from corn silage and 0, 3, 6 and 9% nonforage NDF from cassava residues and 11% nonforage NDF from other NFFS, so that levels of nonforage NDF were 11, 14, 17 and 20% dry matter (DM). Intakes of DM and net energy for lactation, average daily gain and milk fat percentage were not different (p>0.05). Ruminal pH, ammonia concentrations, acetate to propionate ratios, 24 h in sacco fiber digestibility significantly increased with increasing contents of nonforage NDF from cassava residues. Concentrations of VFA, urinary excretion of purine derivatives, milk protein percentage, production of milk and 4% FCM significantly decreased. These results suggest that NFC in diets is one of the limiting factors affecting productivity of dairy cows in the tropics and thus NFFS is better used as partial replacements for FNDF.

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

  • Gunun, P.;Wanapat, M.;Gunun, N.;Cherdthong, A.;Sirilaophaisan, S.;Kaewwongsa, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1111-1119
    • /
    • 2016
  • Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weight (BW) $20{\pm}2kg$ were randomly assigned to a $4{\times}4$ Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen ($NH_3$-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane ($CH_4$) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis.

NUTRITIONAL QUALITY OF WHOLE CROP CORN FORAGE ENSILED WITH CAGE LAYER MANURE. II. IN SITU DEGRADABILITY AND FERMENTATION CHARACTERISTICS IN THE RUMEN OF GOATS

  • Kim, J.H.;Yokota, H.;Ko, Y.D.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.53-59
    • /
    • 1993
  • In situ degradability and fermentation characteristics in the rumen of goats fed whole crop corn forage ensiled with (MS silage) or without (CS silage) 30% of cage layer manure (CLM) were investigated. The two silages were well preserved. To adjust nitrogen intake of CS silage to that of MS silage, the 3rd group of goats was given urea with CS silage at feeding time (US silage). Each goat was given a diet of 2% of the body weight (dry matter basis) daily. In situ degradability of dry matter (DM) and crude protein (CP) of MS silage in the rumen were higher than those of CS and US silages. Total potentially degradable portions of DM and CP in MS silage were also higher than those in CS and US silages. Blood urea nitrogen and rumen ammonia nitrogen concentration of goats fed US and MS silages were significantly (p<0.05) higher than those of goats fed CS silage. Acetic, propionic and butyric acids in ruminal fluids of goats fed MS silage were significantly (p<0.05) higher than those of goats fed CS and US silages.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.