• Title/Summary/Keyword: ruminal fermentation

Search Result 372, Processing Time 0.025 seconds

NUTRITIONAL QUALITY OF WHOLE CROP CORN FORAGE ENSILED WITH CAGE LAYER MANURE. II. IN SITU DEGRADABILITY AND FERMENTATION CHARACTERISTICS IN THE RUMEN OF GOATS

  • Kim, J.H.;Yokota, H.;Ko, Y.D.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.53-59
    • /
    • 1993
  • In situ degradability and fermentation characteristics in the rumen of goats fed whole crop corn forage ensiled with (MS silage) or without (CS silage) 30% of cage layer manure (CLM) were investigated. The two silages were well preserved. To adjust nitrogen intake of CS silage to that of MS silage, the 3rd group of goats was given urea with CS silage at feeding time (US silage). Each goat was given a diet of 2% of the body weight (dry matter basis) daily. In situ degradability of dry matter (DM) and crude protein (CP) of MS silage in the rumen were higher than those of CS and US silages. Total potentially degradable portions of DM and CP in MS silage were also higher than those in CS and US silages. Blood urea nitrogen and rumen ammonia nitrogen concentration of goats fed US and MS silages were significantly (p<0.05) higher than those of goats fed CS silage. Acetic, propionic and butyric acids in ruminal fluids of goats fed MS silage were significantly (p<0.05) higher than those of goats fed CS and US silages.

Can cactus (Opuntia stricta [Haw.] Haw) cladodes plus urea replace wheat bran in steers' diet?

  • da Conceicao, Maria Gabriela;de Andrade Ferreira, Marcelo;de Lima Silva, Janaina;Costa, Cleber Thiago Ferreira;Chagas, Juana Catarina Cariri;de Figueiredo Monteiro, Carolina Correa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1627-1634
    • /
    • 2018
  • Objective: The study aimed to evaluate the effect of replacing wheat bran for cactus cladodes plus urea (0%, 25%, 50%, 75%, and 100%) on the intake of nutrients, nitrogen balance, microbial protein synthesis, and rumen fermentation for steers. Methods: Five crossbred steers (1/2 Holstein-Zebu), with rumen cannula and an average body weight of $180{\pm}5.3kg$, were assigned to a $5{\times}5$ Latin square design. Dietary treatments consisted of the replacement of the total of wheat bran in basal diet by cactus cladodes using the following proportions: 0% for basal diet, 25%, 50%, 75%, and 100% cactus cladodes replacing wheat bran. Urea was added to the diets to adjust the crude protein (CP) content to 130 g/kg dry matter. Results: Maximum dry matter intake (5.73 kg/d) and maximum nitrogen balance (103 g/d) were estimated for 54.6% and 70.8% replacement levels of wheat bran. The maximum microbial protein production (44.6 g/d) was obtained at a replacement level of 49.7%, and a medium value (125 g CP mic/kg total digestible nutrients) of microbial protein efficiency was observed. The rumen pH increased linearly according to cactus cladodes inclusion, while the ammonia nitrogen medium value was 24.5 mg/dL. Conclusion: The replacement of 55% wheat bran for cactus cladodes plus urea in the diet of crossbred steers is recommended.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

Relationship Linking Dietary Quercetin and Roughage to Concentrate Ratio in Feed Utilization, Ruminal Fermentation Traits and Immune Responses in Korean Indigenous Goats

  • Cho, Chi Hyun;Yang, Byung Mo;Park, No Seong;Lee, Hyung Suk;Song, Minho;Yi, Young Joo;Heo, Jung Min;Wickramasuriya, Samiru Sudharaka;Cho, Hyun Min;Lee, Soo Kee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • A total of nine Korean indigenous goats were used in a cross-over arrangement to give nine replicates per treatment, and they were housed individually assigned to 1 of 9 dietary treatments. Nine treatments were 0, 500, and 1000 ppm of quercetin supplementation in diets by mixing roughage and concentrate with different ratios (RC ratio) of 3:7 (RC 30), 5:5 (RC 50) and 7:3 (RC 70). Nutrient utilizations of dry matter, crude fat and NDF were not affected by neither RC ratio nor dietary quercetin (p>0.05), but the rate of crude protein and ADF increased in animals in RC 70 group regardless of quercetin supplementation (p<0.05). In addition, higher RC ratio increased (p<0.05) N retention and N retention rate. Total VFA, acetic acid, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid and valeric acid contents were not affected (p>0.05) by dietary quercetin. Meanwhile, lower total cholesterol level exhibited in animals in RC 70 group compared to RC 30 or 50 groups, unrelated to dietary quercetin (p<0.05), however other plasma parameters were not influenced (p>0.05) by RC ratio and dietary quercetin. Our results indicated that both RC ratio and dietary quercetin may not directly affect the production indices and immune responses in Korean indigenous goat.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Influence of Various Sources of Non-Protein Nitrogenous Sources on In vitro Fermentation Patterns of Rumen Microbes

  • Ali, C.S.;Khaliq, T.;Sarwar, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.357-363
    • /
    • 1997
  • The effect of replacement of cotton seed meal (CSM), with various levels and sources of non-protein nitrogenous (NPN), substances on in vitro ruminal fermentation were studied. Cotton seed meal, in control ration provided nitrogen equivalent to 12.5 percent crude protein while in experimental ration was replaced at 30, 50 & 70 percent levels with urea, diammonium phosphate (DAP) and biuret, respectively. The results of incubation upto 48 hours indicated an improvement in digestibility by replacement of CSM with urea and biuret upto 50 percent protein equivalent, but not with DAP. Bacterial count from cultures containing 50% nitrogen from biuret was significantly higher than DAP, urea and CSM. Various sources of nitrogen produced $NH_3-N$ in increasing order of CSM, biuret, DAP and urea. Increasing levels of NPN resulted in progressive increase in the levels of $NH_3-N$. The levels of various NPN sources had no effect on pH. However, the pH values determined for urea and CSM were higher than biuret and DAP.

Effects of Tween 80 on In Vitro Fermentation of Silages and Interactive Effects of Tween 80, Monensin and Exogenous Fibrolytic Enzymes on Growth Performance by Feedlot Cattle

  • Wang, Y.;McAllister, T.A.;Baah, J.;Wilde, R.;Beauchemin, K.A.;Rode, L.M.;Shelford, J.A.;Kamande, G.M.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.968-978
    • /
    • 2003
  • The effects of monensin, Tween 80 and exogenous fibrolytic enzymes on ruminal fermentation and animal performance were studied in vitro and in vivo. In Expt 1, the effects of the surfactant Tween 80 (0.2% wt/wt, DM basis) on ruminal fermentation of alfalfa, corn and orchardgrass silages were investigated using in vitro gas production techniques. Tween 80 did not affect (p>0.05) cumulative gas production at 24 h, but it reduced (p<0.05) the lag in fermentation of all three silages. With corn silage and orchardgrass silage, gas production rates and concentrations of total volatile fatty acids (VFA) were increased (p<0.05) by Tween 80; with alfalfa silage, they were reduced (p<0.05). Tween 80 increased (p<0.05) the proportion of propionate in total VFA, and reduced (p<0.05) acetate to propionate ratios (A:P) with all three silages. In Expt 2, exogenous fibrolytic enzymes (E; at 0, 37.5 or 75 g/tonne DM), monensin (M; at 0 or 25 ppm and Tween 80 (T; at 0 or 2 L/tonne DM) were added alone or in combination to backgrounding and finishing diets fed to 320 crossbred steers in a feeding trial with a $3{\times}2{\times}$2 factorial arrangement of treatments. The backgrounding and finishing diets contained barley grain and barley silage in ratios of 57.8:42.2 and 93.5:6.5 (DM basis), respectively. Added alone, none of the additives affected DM intake (p>0.1) in the backgrounding or in the finishing period, but interactive $M{\times}T$ effects were observed in the finishing period (p=0.02) and overall (p=0.04). In the finishing period, T without M tended to reduce DM intake (p=0.11), but T with M increased (p=0.05) DM intake. Monensin increased average daily gain (ADG) during backgrounding (p=0.07) and finishing (p=0.01), and this ionophore also improved overall feed efficiency (p=0.02). Warm carcass weight was increased (p<0.001) by M, but dressing percentage was reduced (p=0.07). In the backgrounding period, T increased ADG by 7% (p=0.06). Enzymes increased (p=0.07) ADG by 5 and 6% (low and high application rates, respectively) during backgrounding, but did not affect (p>0.10) ADG during finishing, or overall feed efficiency. Whereas T enhanced the positive effects of M on ADG during backgrounding (p=0.04) and overall (p=0.05), it had no impact (p>0.1) on the effects of E. Interactions between M and T suggest that the surfactant may have potential for enhancing the positive effects of monensin on beef production, but this requires further research.

Evaluation of Different Yeast Species for Improving In vitro Fermentation of Cereal Straws

  • Wang, Zuo;He, Zhixiong;Beauchemin, Karen A.;Tang, Shaoxun;Zhou, Chuanshe;Han, Xuefeng;Wang, Min;Kang, Jinhe;Odongo, Nicholas E.;Tan, Zhiliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-240
    • /
    • 2016
  • Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a $3{\times}4$ factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, $0.25{\times}10^7$, $0.50{\times}10^7$, and $0.75{\times}10^7$ colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen ($NH_3$-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The $NH_3$-N concentration and $CH_4$ production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be $0.25{\times}10^7$ cfu/500 mg substrates in vitro.

Rumen Fermentation and Performance of Lactating Dairy Cows Affected by Physical Forms and Urea Treatment of Rice Straw

  • Gunun, P.;Wanapat, M.;Anantasook, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1295-1303
    • /
    • 2013
  • The aim of this study was to determine the effect of different physical forms and urea treatment of rice straw on feed intake, rumen fermentation, and milk production. Four, multiparous Holstein crossbred dairy cows in mid-lactation with initial body weight (BW) of $409{\pm}20kg$ were randomly assigned according to a $4{\times}4$ Latin square design to receive four dietary treatments. The dietary treatments were as follows: untreated, long form rice straw (LRS), urea-treated (5%), long form rice straw (5% ULRS), urea-treated (2.5%), long form rice straw (2.5% ULRS) and urea-treated (2.5%), chopped (4 cm) rice straw (2.5% UCRS). Cows were fed with concentrate diets at a ratio of concentrate to milk yield of 1:2 and rice straw was fed ad libitum. The findings revealed significant improvements in total DM intake and digestibility by using long and short forms of urea-treated rice straw (p<0.05). Ruminal pH was not altered among all treatments (p>0.05), whereas ruminal $NH_3$-N, BUN and MUN were found to be increased (p<0.01) by urea-treated rice straw as compared with untreated rice straw. Volatile fatty acids (VFAs) concentrations especially those of acetic acid were decreased (p<0.05) and those of propionic acid were increased (p<0.05), thus acetic acid:propionic acid was subsequently lowered (p<0.05) in cows fed with long or short forms of urea-treated rice straw. The 2.5% ULRS and 2.5% UCRS had greater microbial protein synthesis and was greatest when cows were fed with 5% ULRS. The urea-treated rice straw fed groups had increased milk yield (p<0.05), while lower feed cost and greater economic return was in the 2.5% ULRS and 2.5% UCRS (p<0.01). From these results, it could be concluded that 2.5% ULRS could replace 5% ULRS used as a roughage source to maintain feed intake, rumen fermentation, efficiency of microbial protein synthesis, milk production and economical return in mid-lactating dairy cows.