• Title/Summary/Keyword: rule-related behavior classification

Search Result 3, Processing Time 0.018 seconds

Reinterpretation of Behavior for Non-compliance with Procedures : Focusing on the Events at a Domestic Nuclear Power Plants (절차 미준수 행동의 재해석 : 국내 원전 사건을 중심으로)

  • Dong Jin Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.82-95
    • /
    • 2024
  • Analyzing the aftermath of events at domestic nuclear power plants brings in the question: "Why do workers not comply with the prescribed procedures?" The current investigation of nuclear power plant events identifies their reasons considering the factors affecting the workers' behaviors. However, there are some complications to it: in addition to confirming the action such as an error or a violation, there is a limit to identifying the intention of the actor. To overcome this limitation, the study analyzed and examined the reasons for non-compliance identified in nuclear power plant events by Reason's rule-related behavior classification. For behavior analysis, I selected unit behaviors for events that are related to human and organizational factors and occurred at domestic nuclear power plants since 2017, and then I applied the rule-related behavior classification introduced by Reason (2008). This allowed me to identify the intentions by classifying unit behaviors according to quality and compliance with the rules. I also identified the factors that influenced unit behaviors. The analysis showed that most often, non-compliance only pursued personal goals and was based on inadequate risk appraisal. On the other hand, the analysis identified cases where it was caused by such factors as poorly written procedures or human system interfaces. Therefore, the probability of non-compliance can be reduced if these factors are properly addressed. Unlike event investigation techniques that struggle to identify the reasons for employee behavior, this study provides a new interpretation of non-compliance in nuclear power plant events by examining workers' intentions based on the concept of rule-related behavior classification.

A Study on the Analysis of Human-errors in Major Chemical Accidents in Korea (국내 화학사고의 휴먼에러 기반 분석에 관한 연구)

  • Park, Jungchul;Baek, Jong-Bae;Lee, Jun-won;Lee, Jin-woo;Yang, Seung-hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • This study analyses the types, related operations, facilities, and causes of chemical accidents in Korea based on the RISCAD classification taxonomy. In addition, human error analysis was carried out employing different human error classification criteria. Explosion and fire were major accident types, and nearly half of the accidents occurred during maintenance operation. In terms of related facility, storage devices and separators were the two most frequently involved ones. Results of the human error-based analysis showed that latent human errors in management level are involved in many accidents as well as active errors in the field level. Action errors related to unsafe behavior leads to accidents more often compared with the checking behavior. In particular, actions missed and inappropriate actions were major problems among the unsafe behaviors, which implicates that the compliance with the work procedure should be emphasized through education/training for the workers and the establishment of safety culture. According to the analysis of the causes of the human error, the frequency of skill-based mistakes leading to accidents were significantly lower than that of rule-based and knowledge based mistakes. However, there was limitation in the analysis of the root causes due to limited information in the accident investigation report. To solve this, it is suggested to adopt advanced accident investigation system including the establishment of independent organization and improvement in regulation.

A Coevolution of Artificial-Organism Using Classification Rule And Enhanced Backpropagation Neural Network (분류규칙과 강화 역전파 신경망을 이용한 이종 인공유기체의 공진화)

  • Cho Nam-Deok;Kim Ki-Tae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.349-356
    • /
    • 2005
  • Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.