• Title/Summary/Keyword: rule-based region processing

Search Result 4, Processing Time 0.024 seconds

The Method to Estimate Saliency Values using Gauss Weight (가우스 가중치를 이용한 돌출 값 추정을 위한 방법)

  • Yu, Young-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.965-970
    • /
    • 2013
  • It is important work to extract saliency regions from an image as preprocessing for various image processing methods. In this paper, we introduce an improved method to estimate saliency value of each pixel from an image. The proposed method is an improved work of the previously studied method using color and statistical framework to estimate saliency values. At first, saliency value of each pixel is calculated using the local contrast of an image region at various scales and the most significant saliency pixel is determined using saliency value of each pixel. Then, saliency value of each pixel is again estimated using gauss weight with respect to the most significant saliency pixel and the saliency of each pixel is determined to calculate initial probability. At last, the saliency value of each pixel is calculated by Bayes' rule. The experiments show that our approach outperforms the current statistical based method.

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

A Classification Method of Delirium Patients Using Local Covering-Based Rule Acquisition Approach with Rough Lower Approximation (러프 하한 근사를 갖는 로컬 커버링 기반 규칙 획득 기법을 이용한 섬망 환자의 분류 방법)

  • Son, Chang Sik;Kang, Won Seok;Lee, Jong Ha;Moon, Kyoung Ja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2020
  • Delirium is among the most common mental disorders encountered in patients with a temporary cognitive impairment such as consciousness disorder, attention disorder, and poor speech, particularly among those who are older. Delirium is distressing for patients and families, can interfere with the management of symptoms such as pain, and is associated with increased elderly mortality. The purpose of this paper is to generate useful clinical knowledge that can be used to distinguish the outcomes of patients with delirium in long-term care facilities. For this purpose, we extracted the clinical classification knowledge associated with delirium using a local covering rule acquisition approach with the rough lower approximation region. The clinical applicability of the proposed method was verified using data collected from a prospective cohort study. From the results of this study, we found six useful clinical pieces of evidence that the duration of delirium could more than 12 days. Also, we confirmed eight factors such as BMI, Charlson Comorbidity Index, hospitalization path, nutrition deficiency, infection, sleep disturbance, bed scores, and diaper use are important in distinguishing the outcomes of delirium patients. The classification performance of the proposed method was verified by comparison with three benchmarking models, ANN, SVM with RBF kernel, and Random Forest, using a statistical five-fold cross-validation method. The proposed method showed an improved average performance of 0.6% and 2.7% in both accuracy and AUC criteria when compared with the SVM model with the highest classification performance of the three models respectively.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.