• 제목/요약/키워드: rule-based engine

검색결과 128건 처리시간 0.025초

시맨틱검색엔진의 성능평가에 관한 연구 (A Study on the Performance Evaluation of Semantic Retrieval Engines)

  • 노영희
    • 한국비블리아학회지
    • /
    • 제22권2호
    • /
    • pp.141-160
    • /
    • 2011
  • 본 연구에서는 유동성이 크고 데이터의 규모도 상당한 도서관에 일반화시켜 적용할 수 있는 지식베이스 및 검색엔진을 제안하였다. 이를 위해 총 세 개의 지식베이스(트리플 구조 온톨로지, 의미거리기반 의미망지식 베이스, 키워드중심의 도치색인파일)를 구축하였고, 이의 성능을 측정하기 위해 각각 세 개의 검색엔진(추론 규칙기반 제나검색엔진, 개념기반 검색엔진, 키워드기반 루씬검색엔진)을 구축하였다. 시스템 성능평가 결과, 종합적으로 개념기반 검색엔진이 가장 높은 성능을 보여주었고, 다음으로 온톨로지기반 제나검색엔진, 다음으로 일반 키워드 검색엔진 순으로 나타났다.

Design of Rule-based Inference Engine for the Monitoring of Harmful Environments in Workplace

  • 안윤애
    • 한국산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.65-74
    • /
    • 2009
  • 맨홀, 지하정화조, 저장탱크, 밀폐공간 등의 유해 작업장은 환기가 불충분한 상태에서 산소결핍, 유해가스로 인한 건강장해와 인화성 물질에 의한 화재, 폭발 등의 위험이 있다. 이와 같은 유해환경 정보를 작업장 내의 센서를 통해서 실시간으로 모니터링하고, 위험으로부터 작업자의 안전을 보장할 수 있는 시스템이 필요하다. 이 논문에서는 작업장의 유해환경을 모니터링하기 위한 추론엔진을 설계한다. 제안하는 추론엔진은 규칙기반 시스템의 구조를 가지며 JESS를 활용한다. 제안 시스템은 특정 컴퓨팅 플랫폼에 제약되지 않으며 OSGi 기반의 미들웨어와 연동이 쉬운 특징을 가진다.

PROLOG기반의 규칙 기반 전문가 시스템을 이용한 서울시 도시 공원 추천 시스템 구현 (Implementation of Recommender System of Seoul Urban Parks Using Rule-based Expert System based on PROLOG)

  • 손세진;김다희;조예본;전수완;이강희
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권7호
    • /
    • pp.847-856
    • /
    • 2017
  • 본 논문은 사용자들에게 알맞은 공원을 추천해주는 시스템을 제안한다. 사회적, 심리적, 환경적, 신체적 등 사람들에게 긍정적인 요소를 제공하는 도시공원의 기능에 따라 서울시 도시공원을 6가지로 분류한다. 분류된 공원을 규칙기반 전문가 시스템을 기반으로 사용자들에게 추천한다. 공원 선택에 영향을 주는 요인들을 언어 객체로 설정하여 규칙 기반 추론 시스템을 논리 프로그램 언어인 PROLOG로 구현한다. 공원 추천의 규칙 기반 객체는 활동·다목적성과 접근성, 이용 시간을 기준으로 총 9가지 언어 객체를 설계하고 그에 따른 허용된 값을 부여한다. 이를 이용하여 생성된 규칙들이 사용자의 선호도에 따라 점화되고 추천 공원을 추론한다. 선호도에 대한 정보는 사용자들에게 직접 공원 선택에 있어서 기준이 되는 세 가지 요소에 대한 질문을 건네는 대화의 방식으로 얻는다. 결과적으로 공원 추천 시스템을 통해 공원 이용자들의 공원 이용 및 여가 생활에 대한 만족감을 높여주고자 한다.

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

Design of Fault Diagnosis Expert System Using Improved Fuzzy Cognitive Maps and Rough Set Based Rule Minimization

  • 이종필;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.315-320
    • /
    • 1997
  • Rule minimization technique adapted from rough set theory was applied to remove redundant knowledge which is not necessary to make a knowledge base. New algorithm to diagnose fault using Improved Fuzzy Cognitive Maps(I-FCMs), and Fuzzy Associative Memory(FAM) is proposed. I-FCM[22] is superior to gathering knowledge from many experts and descries dynamic behaviors of systems very well. I-FCM is not only a knowledge base, but also a inference engine. FAM has learning capability like neural network[12]. Rule minimization and composition of I-FCM and FAM make it possible to construct compact knowledge base and breaks the border between inference engine and knowledge base.

  • PDF

A Systematic Design of Automatic Fuzzy Rule Generation for Dynamic System

  • Kang, Hoon;Kim, Young-Ho;Jeon, Hong-Tae
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.29-39
    • /
    • 1992
  • We investigate a systematic design procedure of automatic rule generation of fuzzy logic based controllers for highly nonlinear dynamic systems such as an engine dynamic modle. By "automatic rule generation" we mean autonomous clustering or collection of such meaningful transitional relations from one conditional subspace to another. During the design procedure, we also consider optimaly control strategies such as minimum squared error, near minimum time, minimum energy or combined performance critiera. Fuzzy feedback control systems designed by our method have the properties of closed-loop stability, robustness under parameter variabitions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller dwsign to a highly nonlinear model of engine idling speed control.d control.

  • PDF

Development of a knowledge-based medical expert system to infer supportive treatment suggestions for pediatric patients

  • Ertugrul, Duygu Celik;Ulusoy, Ali Hakan
    • ETRI Journal
    • /
    • 제41권4호
    • /
    • pp.515-527
    • /
    • 2019
  • This paper discusses the design, implementation, and potential use of an ontology-based mobile pediatric consultation and monitoring system, which is a smart healthcare expert system for pediatric patients. The proposed system provides remote consultation and monitoring of pediatric patients during their illness at places distant from medical service areas. The system not only shares instant medical data with a pediatrician but also examines the data as a smart medical assistant to detect any emergency situation. In addition, it uses an inference engine to infer instant suggestions for performing certain initial medical treatment steps when necessary. The applied methodologies and main technical contributions have three aspects: (a) pediatric consultation and monitoring ontology, (b) semantic Web rule knowledge base, and (c) inference engine. Two case studies with real pediatric patients are provided and discussed. The reported results of the applied case studies are promising, and they demonstrate the applicability, effectiveness, and efficiency of the proposed approach.

생산일정계획을 위한 지식 기반 모의실험 (Knowledge Based Simulation for Production Scheduling)

  • 나태영;김승권;김선욱
    • 대한산업공학회지
    • /
    • 제23권1호
    • /
    • pp.197-213
    • /
    • 1997
  • It is not easy to find a good production schedule which can be used in practice. Therefore, production scheduling simulation with a simple dispatching rule or a set of dispatching rules is used. However, a simple dispatching rule may not create a robust schedule, for the same rule is blindly applied to all internal production processes. The presumption is that there might be a specific combination of appropriate rules that can improve the efficiency of a total production system for a certain type of orders. In order to acquire a better set of dispatching rules, simulation is used to examine the performance of various combinations of dispatching rule sets. There are innumerable combination of rule sets. Hence it takes too much computer simulation time to find a robust set of dispatching rule for a specific production system. Therefore, we propose a concept of the knowledge based simulation to circumvent the problem. The knowledge based simulation consists of knowledge bases, an inference engine and a simulator. The knowledge base is made of rule sets that is extracted from both simulation and human intuition obtained by the simulation studies. For a certain type of orders, the proposed system provides several sets of dispatching rules that are expected to generate better results. Then the scheduler tries to find the best by simulating all proposed set of rules with the simulator. The knowledge-based simulator armed with the acquired knowledge has produced improved solutions in terms of time and scheduling performance.

  • PDF

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF

DSM 진단 기준을 이용한 ADHD 진단 전문가시스템 구현 (Implementation on ADHD Diagnostic Expert System based on DSM Diagnostic Criteria)

  • 황주비;이강희
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권11호
    • /
    • pp.515-524
    • /
    • 2017
  • 본 논문에서는 ADHD 진단을 해주는 전문가시스템을 설계 및 구현한다. DSM-IV-TR을 이용하여 ADHD 진단기준을 연령대에 따라 단어를 바꾸어 구체화한다. 이 진단지를 가지고 오브젝트와 해당 값을 설정하고 규칙을 생성한다. 그리고 'ADHD 진단 시스템 엔진'과 '사용자 질의응답 프로그램'으로 구성된 진단시스템을 설계한다. 'ADHD 진단 시스템 엔진'은 규칙 기반 추론 엔진으로 Prolog 언어로 구현하여, INPUT을 '사용자 질의응답 프로그램'으로부터 받는다. INPUT에 의해 규칙은 ADHD 진단기준을 기반으로 점화되며 진단결과를 추론해서 OUTPUT을 다시 '사용자 질의응답 프로그램'으로 보낸다. '사용자 질의응답 프로그램'은 Python 언어로 구현하여 사용자와의 대화를 처리하는 인터페이스 역할을 한다. 'ADHD 진단 시스템 엔진'과 '사용자 질의응답 프로그램'의 중간다리 역할을 Pyswip 라이브러리를 통해서 수행한다. 결과적으로 ADHD 진단 전문가시스템을 통해 진단비용 절감과 간편한 이용으로 치료계획에 도움을 주고자한다.