• 제목/요약/키워드: rule-based discretization

검색결과 10건 처리시간 0.018초

PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화 (Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation)

  • 송화창;고재환;최병욱
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.792-797
    • /
    • 2011
  • 본 논문은 배전망에서의 PV (photovoltaic) 발전 시스템의 최적 배치 문제를 이산 입자 군집 최적화 (DPSO, discrete particle swarm optimization)를 이용하여 해를 구할 때 DPSO에 포함되어야 하는 이산화 단계를 위한 하이브리드 이산화 기법의 적용에 대하여 논한다. 이를 위해 PSO 반복단계에서 목적 함수 값과 최적화 속도를 입력 파라미터로 하는 규칙 기반 전문가 시스템을 제안하고 이산 변수를 포함하여 표현되는 PV 시스템 배치 문제의 최적해를 구하는데 적용하였다. 다수준 이산화를 위하여 간단한 라운딩과 sigmoid 함수를 이용한 3단계 및 5단계 이산화 기법을 하이브리드 형태로 적용하였다. 규칙 기반 전문가 시스템을 적용하여 각 PSO 과정에서 적절한 이산화 기법을 선택함으로써 기존의 DPSO보다 좋은 성능의 최적화가 가능하도록 하였다.

Discretization technique for stability analysis of complex slopes

  • Hou, Chaoqun;Zhang, Tingting;Sun, Zhibin;Dias, Daniel;Li, Jianfei
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.227-236
    • /
    • 2019
  • In practice, the natural slopes are frequently with soils of spatial properties and irregular features. The traditional limit analysis method meets an inherent difficulty to deal with the stability problem for such slopes due to the normal condition in the associated flow rule. To overcome the problem, a novel technique based on the upper bound limit analysis, which is called the discretization technique, is employed for the stability evaluation of complex slopes. In this paper, the discretization mechanism for complex slopes was presented, and the safety factors of several examples were calculated. The good agreement between the discretization-based and previous results shows the accuracy of the proposed mechanism, proving that it can be an alternative and reliable approach for complex slope stability analysis.

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.

최적 연관 속성 규칙을 이용한 비명시적 단백질 상호작용의 예측 (Prediction of Implicit Protein - Protein Interaction Using Optimal Associative Feature Rule)

  • 엄재홍;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권4호
    • /
    • pp.365-377
    • /
    • 2006
  • 단백질들은 서로 다른 단백질들과 상호작용 하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질 상호작용의 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이타가 산출되고 있는 현(現) 게놈시대에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모(Saccharomyces cerevisiae)에 대해 공개되어있는 단백질 상호작용 데이타들에서 속성들 간의 연관을 통해 유추 가능한 잠재적 단백질 상호작용들을 예측하기 위한 연관속성 마이닝 방법을 제시한다. 단백질의 속성들 중 연속값을 가지는 속성값들은 최대상호 의존성에 기반을 두어 이산화 하였으며, 정보이론기반 속성선택 알고리즘을 사용하여 단백질들 간의 상호작용 예측을 위해 고려되는 단백질의 속성(attribute) 수 증가에 따른 속성차원문제를 극복하도록 하였다. 속성들 간의 연관성 발견은 데이타마이닝 분야에서 사용되는 연관규칙 발견(association rule discovery) 방법을 사용하였다 논문에서 제안한 방법은 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 최대 약 96.5%의 예측 정확도를 보였으며 속성필터링을 통하여 속성필터링을 하지 않는 기존의 방법에 비해 최대 약 29.4% 연관규칙 발견속도 향상을 보였다.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

패턴 매칭과 자동 규칙 생성에 기반한 2단계 주식 트레이딩 시스템 (A Two-Phase Stock Trading System based on Pattern Matching and Automatic Rule Induction)

  • 이종우;김유섭;김성동;이재원;채진석
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.257-264
    • /
    • 2003
  • 일반적인 동적 매매 환경에서의 금융 예측 시스템은 주어진 목적을 최적으로 만족시키는 매매 형태를 찾고자 한다. 본 논문은 수익률을 극대화시키기 위하여 추출과 여과라는 두개의 단계로 구성된 새로운 형태의 주식 매매 시스템을 제안한다. 주식 추출 단계에서는 특정 시계열 패턴에 부합하는 주식을 추출하는데, 이러한 시계열 패턴은 기술 지표 값들의 조합으로 표현된다. 그리고 여과 단계에서는 추출된 주식 집합에 여과 규칙들을 적용하여 실제 매매 대상이 되는 주식들을 골라내는데, 여과 규칙은 과거 주가 데이터로부터 자동으로 유도되었다. 이를 위하여, 우리는 먼저 방대한 과거 일별 주가 데이터로부터 기술 지표 값들을 계산하였다. 계산된 기술 지표 값들은 시계열 패턴을 추출하는데 사용되고 이 값들의 이산화 구간들의 분포가 양성 및 음성 데이터들에 대하여 계산된다. 본 논문에서는 독특한 분포를 보이는 구간에 존재하는 기술 지표 값들이 주가의 향후 움직임을 예측하는 데 도움을 준다는 가정을 하였다. 그리고 여과 규칙은 바로 이런 독특한 분포를 보이는 구간 내의 데이터 값들로부터 자동으로 유도되었다. 우리는 시뮬레이션을 통해, 본 논문에서 제시한 트레이딩 시스템이 시장 평균 수익률을 상회한다는 사실을 확인함으로써 위의 가정에 대한 검증을 할 수 있었다.

이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가 (Performance Comparison of Clustering using Discritization Algorithm)

  • 원재강;이정찬;정용규;이영호
    • 서비스연구
    • /
    • 제3권2호
    • /
    • pp.53-60
    • /
    • 2013
  • 데이터로부터 의미있는 형태의 정보를 얻기 위한 여러 가지 기법들이 개발되어 왔지만, 최근 들어 가장 각광받는 분야 중 하나는 패턴인식과 기계학습 방법이다. 기존의 학습 알고리즘은 대부분 범주 형 속성에 기반 한 규칙 또는 의사 결정 모델을 생성한다. 그런데, 실세계의 데이터는 보통 범주 형 속성 외에도 수치 값을 갖는 속성을 포함하고, 또 많은 경우에 있어 수치 형 속성으로만 구성되기도 한다. 따라서 이러한 경우, 데이터를 학습에 사용하기 위해서는 수치형 속성에 대한 적절한 처리 과정이 필요하다. 본 논문에서는, 수치형 속성의 도메인을 여러 개의 분절된 부분으로 나누어 학습 알고리즘에 사용하는 방법인 이산화 기법을 설명하고 또한 데이터마이닝의 기법으로 사용되는 클러스터링(Clustering)을 사용한다. 클러스터란 대량의 데이터베이스로부터 유사한 레코드 특성을 지닌 작은 그룹으로 여러 개를 분할하는 것으로 패턴 공간에 주어진 유한 개의 패턴들이 서로 가깝게 모여서 무리를 이루고 있는 패턴 집합이다. 그 집합들 중에서 특정한 카테고리를 지정하지 않고 주어진 데이터들에서 어떤 패턴을 추출하여, 비슷한 데이터들을 묶어서 데이터를 분류하는 기법인 클러스터링에 대해 실험한다.

  • PDF

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF