• Title/Summary/Keyword: rule pruning

Search Result 34, Processing Time 0.024 seconds

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF

Self-Organizing Fuzzy Systems with Rule Pruning (규칙 제거 기능이 있는 자기구성 퍼지 시스템)

  • Lee, Chang-Wook;Lee, Pyeong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • In this paper a self-organizing fuzzy system with rule pruning is proposed. A conventional self-organizing fuzzy system having only rule generation has a drawback in generating many slightly different rules from the existing rules which results in increased computation time and slowly learning. The proposed self-organizing fuzzy system generates fuzzy rules based on input-output data and prunes redundant rules which are caused by parameter training. The proposed system has a simple structure but performs almost equivalent function to the conventional self-organizing fuzzy system. Also, this system has better learning speed than the conventional system. Simulation results on several numerical examples demonstrate the performance of the proposed system.

  • PDF

Comparison of Pruning Method for Revised Analog Concept Learning System (ACLS의 개선을 위한 전지(剪枝)방법의 비교)

  • Yim, Sung-Sic;Kwon, Young-Sik;Kim, Nam-Ho
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.15-28
    • /
    • 1997
  • Knowledge acquisition has been a major bottleneck in building expert systems. To ease the problems arising in knowledge acquisition, analog concept learning systems(ACLS) has been used. In this paper, in order to avoid the overfitting problem and secure a good performance, we propose the revised ACLS, which pruning methods -cost complexity, reduced error, pessimistic pruning and production rule- are incorporated into and apply them to the credit evaluation for Korean companies. The performances of the revised ACLS are evaluated in light of the prediction accuracy. To check the effect of the training data sampling on the performance, experiments are conducted using the different proportion of the training data. Experimental results show that the revised ACLS of combining cost complexity pruning with reduced error pruning performs best among original ACLS and other methods.

  • PDF

Tuple Pruning Using Bloom Filter for Packet Classification (패킷 분류를 위한 블룸 필터 이용 튜플 제거 알고리즘)

  • Kim, So-Yeon;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • Due to the emergence of new application programs and the fast growth of Internet users, Internet routers are required to provide the quality of services according to the class of input packets, which is identified by wire-speed packet classification. For a pre-defined rule set, by performing multi-dimensional search using various header fields of an input packet, packet classification determines the highest priority rule matching to the input packet. Efficient packet classification algorithms have been widely studied. Tuple pruning algorithm provides fast classification performance using hash-based search against the candidate tuples that may include matching rules. Bloom filter is an efficient data structure composed of a bit vector which represents the membership information of each element included in a given set. It is used as a pre-filter determining whether a specific input is a member of a set or not. This paper proposes new tuple pruning algorithms using Bloom filters, which effectively remove unnecessary tuples which do not include matching rules. Using the database known to be similar to actual rule sets used in Internet routers, simulation results show that the proposed tuple pruning algorithm provides faster packet classification as well as consumes smaller memory amount compared with the previous tuple pruning algorithm.

Restructuring a Feed-forward Neural Network Using Hidden Knowledge Analysis (학습된 지식의 분석을 통한 신경망 재구성 방법)

  • Kim, Hyeon-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • It is known that restructuring feed-forward neural network affects generalization capability and efficiency of the network. In this paper, we introduce a new approach to restructure a neural network using abstraction of the hidden knowledge that the network has teamed. This method involves extracting local rules from non-input nodes and aggregation of the rules into global rule base. The extracted local rules are used for pruning unnecessary connections of local nodes and the aggregation eliminates any possible redundancies arid inconsistencies among local rule-based structures. Final network is generated by the global rule-based structure. Complexity of the final network is much reduced, compared to a fully-connected neural network and generalization capability is improved. Empirical results are also shown.

Attributed AND-OR Graph for Synthesis of Superscalar Processor Simulator (슈퍼스칼라 프로세서 시뮬레이터의 생성을 위한 Attributed AND-OR 그래프)

  • Jun Kyoung Kim;Tag Gon Kim
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.73-78
    • /
    • 2003
  • This paper proposes the simulator synthesis scheme which is based on the exploration of the total design space in attributed AND-OR graph. Attributed AND-OR graph is a systematic design space representation formalism which enables to represent all the design space by decomposition rule and specialization rule. In addition, attributes attached to the design entity provides flexible modeling. Based on this design space representation scheme, a pruning algorithm which can transform the total design space into sub-design space that satisfies the user requirements is given. We have shown the effectiveness of our framework by (ⅰ) constructing the design space of superscalar processor in attributed AND-OR graph (ⅱ) pruning it to obtain the ARM9 processor architecture. (ⅲ) modeling the components of the architecture and (ⅳ) simulating the ARM9 model.

  • PDF

Design and Implementation of Omok Program Using Game-Tree and Alpha-Beta Pruning (게임 트리와 알파-베타 가지치기를 이용한 오목 프로그램의 설계 및 구현)

  • Lee, Kyong-Ho;Han, Won-keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.427-430
    • /
    • 2018
  • 본 논문에서는 오목을 두는 지능적 프로그램을 설계하고 구현하였다. 규칙은 렌주 룰(renju rule)을 기준으로 하였으며, $15{\times}15$ 게임 판에서 오목을 둔다. 초기에는 문제 분석을 통하여 분석된 가중치로 판단을 하여 판단을 하여 게임을 진행하도록 하였으나, 반복된 수행의 경험적 판단을 통하여 얻은 정보로 여러 차례 수정하며 고정된 가중치를 구성하고, 이 가중치를 게임에서 돌을 놓을 때 평가 기준으로 삼도록 하였으며, 최소-최대 게임 트리(min-max game tree)를 이용하여 상대가 있는 게임을 수행할 수 있도록 하였다. 또한 프로그램 자신에게 유리한 수를 찾기 위한 탐색에서 무의미한 노드들의 전개를 줄여 제한된 시간안에 좋은 수를 찾을 수 있도록 알파 베타 가지치기(alpha-beta pruning)를 사용하도록 프로그램을 구현하였다. 이렇게 구현된 오목 프로그램은 게임을 본 프로그램과 게임 하기 원하는 주변의 일반인들에게 90% 이상의 승률을 보이고 있었다.

  • PDF

Splitting Algorithm Using Total Information Gain for a Market Segmentation Problem

  • Kim, Jae-Kyeong;Kim, Chang-Kwon;Kim, Soung-Hie
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.2
    • /
    • pp.183-203
    • /
    • 1993
  • One of the most difficult and time-consuming stages in the development of the knowledge-based system is a knowledge acquisition. A splitting algorithm is developed to infer a rule-tree which can be converted to a rule-typed knowledge. A market segmentation may be performed in order to establish market strategy suitable to each market segment. As the sales data of a product market is probabilistic and noisy, it becomes necessary to prune the rule-tree-at an acceptable level while generating a rule-tree. A splitting algorithm is developed using the pruning measure based on a total amount of information gain and the measure of existing algorithms. A user can easily adjust the size of the resulting rule-tree according to his(her) preferences and problem domains. The algorithm is applied to a market segmentation problem of a medium-large computer market. The algorithm is illustrated step by step with a sales data of a computer market and is analyzed.

  • PDF

The Proposition of Conditionally Pure Confidence in Association Rule Mining

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1141-1151
    • /
    • 2008
  • Data mining is the process of sorting through large amounts of data and picking out useful information. One of the well-studied problems in data mining is the exploration of association rules. An association rule technique finds the relation among each items in massive volume database. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper propose a conditional pure confidence to evaluate association rules and then describe some properties for a proposed measure. The comparative studies with confidence and pure confidence are shown by numerical example. The results show that the conditional pure confidence is better than confidence or pure confidence.

  • PDF

Decision process for right association rule generation (올바른 연관성 규칙 생성을 위한 의사결정과정의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.263-270
    • /
    • 2010
  • Data mining is the process of sorting through large amounts of data and picking out useful information. An important goal of data mining is to discover, define and determine the relationship between several variables. Association rule mining is an important research topic in data mining. An association rule technique finds the relation among each items in massive volume database. Association rule technique consists of two steps: finding frequent itemsets and then extracting interesting rules from the frequent itemsets. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper explores some problems for two interestingness measures, confidence and net confidence, and then propose a decision process for right association rule generation using these interestingness measures.