• 제목/요약/키워드: rule of thumb

검색결과 58건 처리시간 0.023초

다양한 대역폭 선택법에 따른 커널밀도추정의 비교 연구 (Comparison Study of Kernel Density Estimation according to Various Bandwidth Selectors)

  • 강영진;노유정
    • 한국전산구조공학회논문집
    • /
    • 제32권3호
    • /
    • pp.173-181
    • /
    • 2019
  • 제한된 실험 데이터로부터 확률분포함수를 추정하기 위해서 KDE가 많이 사용되고 있다. KDE에 의한 분포함수는 대역폭 선택법에 따라서 실험 데이터에 대해 평활하거나 과대적합된 커널 추정치를 생성한다. 본 연구에서는 Silverman's rule of thumb, rule using adaptive estimate, oversmoothing rule을 사용해서 각 방법에 따른 정확성과 보수적인 성향을 비교하였다. 비교를 위해서 단봉분포와 다봉분포를 가지는 실제 모델을 가정하고 통계적 시뮬레이션을 수행한 다음 다양한 데이터의 개수에 따른 추정된 분포함수의 정확도와 보수성을 비교하였다. 또한, 간단한 신뢰성 예제를 통해 대역폭 선택법에 따른 KDE의 추정된 분포가 신뢰성 해석 결과에 어떻게 영향을 미치는지 확인하였다.

Equipment replacement cost analysis within the construction industry

  • Oh, Hyun-Seung
    • 경영과학
    • /
    • 제8권1호
    • /
    • pp.41-50
    • /
    • 1991
  • Within the current construction industry, constractor equipment management practices lack structure and often are not addressed through an economic analysis and evaluation process. This paper explores two areas...cost of capital and inflation...with the intention of providing insight for a more structured and economic based approach to contractor equipment replacement practices rather than by the traditional "rule of thumb".umb".uot;.

  • PDF

Determination of the Number of Components in Spectroscopy from the Multilinear Model Fitting

  • Kim, Choong-Rak;Chung, Byung-Chull;Lee, Choon-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.367-374
    • /
    • 1999
  • Biological specimens contain several components and multilinear models are very useful in analyzing these data. After fitting the model the number of components are determined by the change of mean squared error however this method is quite rule of thumb. in this paper we suggest a measure to decide the number of components based on the relative change of to mean squared error. Simulations are done and applications to real data set are given as illustrations.

  • PDF

Method and Procedure for Economic Evaluation of Improvement Activities

  • Kono, Hirokazu;Ichikizaki, Osamu
    • Industrial Engineering and Management Systems
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2015
  • The purpose of this paper is to propose an appropriate evaluation scheme for improvement activities, based on a simple model comprising cash inflow by sales as well as variable and fixed cost expenditures. The paper distinguishes capacity surplus and capacity shortage situations, and examines economic benefits gained by yield increase improvement and capacity increase. The paper then proposes a basic rule of thumb for economic evaluation of improvement activities. The logic is simple but useful in practice, being conducive towards improvement activities under current economic conditions with uncertainties.

지식 기반 추론 엔진을 이용한 자동화된 데이터베이스 튜닝 시스템 (Automated-Database Tuning System With Knowledge-based Reasoning Engine)

  • 강승석;이동주;정옥란;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (A)
    • /
    • pp.17-18
    • /
    • 2007
  • 데이터베이스 튜닝은 일반적으로 데이터베이스 어플리케이션을 "좀 더 빠르게" 실행하게 하는 일련의 활동을 뜻한다[1]. 데이터베이스 관리자가 튜닝에 필요한 주먹구구식 룰(Rule of thumb)들을 모두 파악 하고 상황에 맞추어 적용하는 것은 비싼 비용과 오랜 시간을 요구한다. 그렇게 때문에 서로 다른 어플 리케이션들이 맞물려 있는 복잡한 서비스는 필수적으로 자동화된 데이터베이스 성능 관리와 튜닝을 필 요로 한다. 본 논문에서는 이를 해결하기 위하여 지식 도매인(Knowledge Domain)을 기초로 한 자동화 된 데이터베이스 튜닝 원칙(Tuning Principle)을 제시하는 시스템을 제안한다. 각각의 데이터베이스 튜닝 이론들은 지식 도매인의 지식으로 활용되며, 성능에 영향을 미치는 요소들을 개체(Object)와 콘셉트 (Concept)로 구성하고 추론 시스템을 통해 튜닝 원칙을 추론하여 쉽고 빠르게 현재 상황에 맞는 튜닝 방법론을 적용시킬 수 있다. 자동화된 데이터베이스 튜닝에 대해 여러 분야에 걸쳐 학문적인 연구가 이루어지고 있다. 그 예로써 Microsoft의 AutoAdmin Project[2], Oracle의 SQL 튜닝 아키텍처[3], COLT[4], DBA Companion[5], SQUASH[6] 등을 들 수 있다. 이러한 최적화 기법들을 각각의 기능적인 방법론에 따라 다시 분류하면 크게 Design Tuning, Logical Structure Tuning, Sentence Tuning, SQL Tuning, Server Tuning, System/Network Tuning으로 나누어 볼 수 있다. 이 중 SQL Tuning 등은 수치적으로 결정되어 이미 존재하는 정보를 이용하기 때문에 구조화된 모델로 표현하기 쉽고 사용자의 다양한 요구에 의해 변화하는 조건들을 수용하기 쉽기 때문에 이에 중점을 두고 성능 문제를 해결하는 데 초점을 맞추었다. 데이터베이스 시스템의 일련의 처리 과정에 따라 DBMS를 구성하는 개체들과 속성, 그리고 연관 관계들이 모델링된다. 데이터베이스 시스템은 Application / Query / DBMS Level의 3개 레벨에 따라 구조화되며, 본 논문에서는 개체, 속성, 연관 관계 및 데이터베이스 튜닝에 사용되는 Rule of thumb들을 분석하여 튜닝 원칙을 포함한 지식의 형태로 변환하였다. 튜닝 원칙은 데이터베이스 시스템에서 발생하는 문제를 해결할 수 있게 하는 일종의 황금률로써 지식 도매인의 바탕이 되는 사실(Fact)과 룰(Rule) 로써 표현된다. Fact는 모델링된 시스템을 지식 도매인의 하나의 지식 개체로 표현하는 방식이고, Rule 은 Fact에 기반을 두어 튜닝 원칙을 지식의 형태로 표현한 것이다. Rule은 다시 시스템 모델링을 통해 사전에 정의되는 Rule와 튜닝 원칙을 추론하기 위해 사용되는 Rule의 두 가지 타업으로 나뉘며, 대부분의 Rule은 입력되는 값에 따라 다른 솔루션을 취하게 하는 분기의 역할을 수행한다. 사용자는 제한적으로 자동 생성된 Fact와 Rule을 통해 튜닝 원칙을 추론하여 데이터베이스 시스템에 적용할 수 있으며, 요구나 필요에 따라 GUI를 통해 상황에 맞는 Fact와 Rule을 수동으로 추가할 수도 었다. 지식 도매인에서 튜닝 원칙을 추론하기 위해 JAVA 기반의 추론 엔진인 JESS가 사용된다. JESS는 스크립트 언어를 사용하는 전문가 시스템[7]으로 선언적 룰(Declarative Rule)을 이용하여 지식을 표현 하고 추론을 수행하는 추론 엔진의 한 종류이다. JESS의 지식 표현 방식은 튜닝 원칙을 쉽게 표현하고 수용할 수 있는 구조를 가지고 있으며 작은 크기와 빠른 추론 성능을 가지기 때문에 실시간으로 처리 되는 어플리케이션 튜닝에 적합하다. 지식 기반 모률의 가장 큰 역할은 주어진 데이터베이스 시스템의 모델을 통하여 필요한 새로운 지식을 생성하고 저장하는 것이다. 이를 위하여 Fact와 Rule은 지식 표현 의 기본 단위인 트리플(Triple)의 형태로 표현된다, 트리플은 Subject, Property, Object의 3가지 요소로 구성되며, 대부분의 Fact와 Rule들은 트리플의 기본 형태 또는 트리플의 조합으로 이루어진 C Condition과 Action의 두 부분의 결합으로 구성된다. 이와 같이 데이터베이스 시스템 모델의 개체들과 속성, 그리고 연관 관계들을 표현함으로써 지식들이 추론 엔진의 Fact와 Rule로 기능할 수 있다. 본 시스템에서는 이를 구현 및 실험하기 위하여 웹 기반 서버-클라이언트 시스템을 가정하였다. 서버는 Process Controller, Parser, Rule Database, JESS Reasoning Engine으로 구성 되 어 있으며, 클라이 언트는 Rule Manager Interface와 Result Viewer로 구성되어 었다. 실험을 통해 얻어지는 튜닝 원칙 적용 전후의 실행 시간 측정 등 데이터베이스 시스템 성능 척도를 비교함으로써 시스템의 효용을 판단하였으며, 실험 결과 적용 전에 비하여 튜닝 원칙을 적용한 경우 최대 1초 미만의 전처리에 따른 부하 시간 추가와 최소 약 1.5배에서 최대 약 3배까지의 처리 시간 개선을 확인하였다. 본 논문에서 제안하는 시스템은 튜닝 원칙을 자동으로 생성하고 지식 형태로 변형시킴으로써 새로운 튜닝 원칙을 파생하여 제공하고, 성능에 영향을 미치는 요소와 함께 직접 Fact과 Rule을 추가함으로써 커스터마이정된 튜닝을 수행할 수 있게 하는 장점을 가진다. 추후 쿼리 자체의 튜닝 및 인텍스 최적화 등의 프로세스 자동화와 Rule을 효율적으로 정의하고 추가하는 방법 그리고 시스템 모델링을 효과적으로 구성하는 방법에 대한 연구를 통해 본 연구를 더욱 개선시킬 수 있을 것이다.

  • PDF

퍼지 신경망을 이용한 맹장염진단에 관한 연구 (A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network)

  • 박인규;신승중;정광호
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF

단체표준 인증제도 실태조사 및 운영지침개발 (Research on the Actual Condition and Development of Operational Guide for Cooperation Group Standards Certification System)

  • 고현우
    • 산업경영시스템학회지
    • /
    • 제32권2호
    • /
    • pp.94-103
    • /
    • 2009
  • In relation to a certification system recently, it is coming out complains about make a rule of thumb certification, problems of after-service and duplication with government certifications. Also there is confusion in operating certification system to lack of properly rule to international standard. These impose a heavy burden on company in terms of times and costs and enhance competitiveness. Nevertheless, the survey was not built yet for the status and problems of the cooperation group standards certification System. So, this study purposes that research on the actual condition and development of operational guide for cooperation group standards certification system. In addition it ultimately improve the certification system for reliability and international competitive power. For more detail on this study, it would be considered conformity assessment, domestic/international conformity assessment and certification criteria. Also comparing survey result on the actual condition with international standards, develop operational guidelines to meet international standards.

빅데이터 분석을 통한 소방관의 경험법칙 검증 및 화재예방 활용 (Verification of firefighters' heuristics through big data analysis)

  • 박소현;박정훈;;신동일
    • 한국가스학회지
    • /
    • 제24권2호
    • /
    • pp.50-55
    • /
    • 2020
  • 소방관들의 현장 활동에서 활용도가 높은 축적된 경험법칙을 경기도내 화재발생 빅데이터와의 비교분석을 통해 신뢰성을 검토하고, 시기별, 요일별, 대상별로 보다 적절하게 화재 예방 활동에 활용될 수 있도록 개선된 정량적 모델화를 연구하였다. 소방관들의 직접 면담을 통해 공감도가 높은 경험법칙을 수집하였으며, 그 중 화재 모니터링 및 발생시점의 예측 관점에서 가장 중요하다 판단된 "금요일이 가장 화재 발생률이 높다"는 경험법칙을 대상으로, 경기도에서 2018년에 발생한 화재건수, 피해내역 등 빅데이터 비교분석을 실시하였다. 더 나아가 지역별, 시간대별, 건물유형별 요일과의 화재발생 패턴을 도출하였다. 연구를 통해 실효성이 확인된 경험법칙에 대해, 화재발생 빅데이터를 반영한, 지자체와 시기별 인자가 포함된 개선된 정량적 예측모델화 및 경험법칙의 구체화를 통해, 상대적으로 경험이 적은 소방관들도 의사결정에 효과적으로 활용할 수 있는 방안을 제시하였다.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.