• Title/Summary/Keyword: rubber-steel bearing

Search Result 45, Processing Time 0.021 seconds

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

An Experimental Study on Fiber Reinforced Strip Form Isolator (스트립형의 섬유 면진 베어링의 실험적 해석)

  • 문병영;강경주;강범수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.409-416
    • /
    • 2002
  • In order to apply seismic isolators to the low-cost buildings, seismic isolators have to be low-cost and light. In this paper fiber reinforced strip form isolator in which the steel plates of conventional rubber bearing was replaced by fiber was proposed. The proposed fiber reinforced strip form isolator was designed, fabricated, cut and subjected to vertical test and harizontal test. Therefore fiber reinforced strip form isolator was to be shown valid in the view point of fabrication and application to desired size. The harizontal test and vertical test have shown that fiber reinforced strip form isolator could replace the rubber isolator. By these results, low-cost and light seismic isolator can be applied to the low-cost building. These fiber reinforced strip form isolator can be applied to the low-cost building.

  • PDF

Shape Optimization of Uniaxial Vibrating Metal Damper (일축 진동형 금속제진장치 형상 최적설계)

  • Yoon, Ji-Hoon;Park, Ji-Woon;Lim, Yun-Mook;Yoon, Gil-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • This study performs the structural analysis and the optimum design of a vibrating metal damper to absorb vibration energy. Unlike other dampers such as rubber bearing, friction or viscose dampers, the present vibrating metal damper utilizes the plastic deformation of a steel and its associated hysteresis phenomenon to reduce vibrations of structures. To optimize this vibrating metal damper, it is important to obtain plastic deformation through the damper. To achieve this, the shape optimization method is developed and applied to find out optimal envelopes of the metal damper. Depending on the parameterization scheme, some novel optimal shapes can be found.

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood;Muhammad Usman;Mati Ullah Shah;Muhammad Rizwan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.531-543
    • /
    • 2023
  • Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper (E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답)

  • Hwang, Inho;Ju, Minkwan;Sim, Jongsung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.685-690
    • /
    • 2008
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using hysteretic damper is shown to effectively protect structures against earthquakes. A mechanical model is determined that can effectively portray the behavior of a typical E-shape device. Comparison with experimental results for a hysteretic damper indicates that the model is accurate over a wide range of operating conditions and adequate for analysis. The seismic performance of hysteretic dampers are studied and compared with the conventional systems as a base isolation system. A five-story building is modeled and the seismic performance of the systems subjected to three different earthquake is compared. The results show that the hysteretic damper system can provide superior protection than the other systems for a wide range of ground motions.