• 제목/요약/키워드: rubber-based

검색결과 681건 처리시간 0.023초

NR, SBR, BR로 이루어진 고무배합물의 고무조성비에 따른 가황 특성 (Cure Characteristics of Carbon Block-Filled Rubber Compounds Composed of NR, SBR, and BR)

  • 최성신
    • Elastomers and Composites
    • /
    • 제35권3호
    • /
    • pp.215-226
    • /
    • 2000
  • 고무 조성비가 다른 카본블랙으로 보강된 고무 배합물의 가황 특성을 연구하였다. 한 가지 고무로 이루어진 고무 배합물, 두 가지 고무로 이루어진 고무 배합물, 그리고 세 가지 고무로 이루어진 고무 배합물을 실험 대상으로 삼았다. NR/BR과 SBR/BR 배합물 중에서 BR의 함량이 높은 것의 델타토크는 단일 고무 배합물의 경우보다 높다. 삼중 고무 배합물의 델타 토크의 경우에는 세가지 고무의 함량비가 유사할수록 델타 토크가 낮아졌다. 스코치 시간과 적정 가황 시간은 NR이 증가할수록 빨라졌고 SBR이 증가할수록 느려졌다. 가황 속도는 SBR 함량이 증가할수록 느려졌다. 가교 역전(reversion) 현상은 SBR 함량이 증가할수록 감소하였다.

  • PDF

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

Analysis of Indonesian Rubber Export Supply for 1995-2015

  • MULYANI, Mulyani;KUSNANDAR, Kusnandar;ANTRIYANDARTI, Ernoiz
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.93-102
    • /
    • 2021
  • This study aims is to determine the factors that influence Indonesian rubber export supply based on the export destination countries. Indonesian rubber export supply is thought to be influenced by the variables like the volume of Indonesia rubber exports, the price of Indonesian natural rubber, the volume of domestic rubber production, the export volume of the previous period, the rupiah exchange rate against US$, the interest rate and real Gross Domestic Product (GDP). The data used is the annual time series from 1995-2015 based on export countries encompassing the United States, China, and Japan. Multiple linear regression with the Ordinary Least Square (OLS) method is applied to analyse the data. The results showed that the volume of Indonesian rubber exports to China is not influenced by domestic natural rubber prices and the Rupiah exchange rate against the Chinese Yuan. The volume of Indonesian rubber exports to Japan is influenced by the volume of domestic rubber production. The volume of Indonesian rubber exports to the three destination countries is influenced by the volume of domestic rubber production, interest rate, and real GDP.

혼합물 실험계획법을 활용한 고무 교질 현탁액 제조 공정의 최적화 (Optimization of a Rubber based Colloidal Suspension Manufacturing Process Using Mixture Experimental Design)

  • 유인곤;안성재;유성명;홍성훈;이민구
    • 품질경영학회지
    • /
    • 제52권2호
    • /
    • pp.377-394
    • /
    • 2024
  • Purpose: To derive the optimal conditions for the Rubber based colloidal suspension manufacturing process, which made using a stirrer, to apply the mixture design method. Methods: We used two process component and one process variable Mixture design to derive the optimal conditions for the process. The response variables were selected for rotational viscometer measures which can represent Rubber based colloidal suspension quality. The input variables were selected as the values of rubber-organic solvent expressed in proportions as process components and stirring amount as a process variable which are controllable factors in the process. Results: Based on the results of the experiment, rubber and organic solvent and the interaction between stirring amount and rubber and the interaction between stirring amount and rubber and organic solvent were significant. Reproducibility of the regression model was confirmed by the observation that the values obtained from the reproducibility experiment fell within the confidence interval. Additionally, the model predictions were found to be in close agreement with the field measurements. Conclusion: In this study, a regression model was developed to predict the viscosity change of colloidal suspensions based on the proportion of rubber based colloidal suspension. The developed regression model can lead to improved product quality.

압축된 고무재료의 정적 변형 해석과 동특성 예측 (Static Deformation Analysis and Dynamic Characteristics Predicton of Compressed Rubber Materials)

  • 김국원;임종락;손희기;안태길
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.472-476
    • /
    • 1999
  • The effect of static preload on the dynamic properties of rubber materials is rather important, especially when good isolation characteristics are required at high frequencies. However, there are still few papers for dynamic characteristics of compressed rubber components. It was demonstrated in reference (4) that for bonded rubber material of a cylindrical shape, a simplified theory equation between linear dynamic and nonlinear static behavior of rubber material was useful to predict their combined effects. This paper presents the second part of the study. It is confirmed that for the compressed rubber material, the stress can be factored into a function of frequency and a function of strain(stretch). The finite element methodis applied to analyze non-linear large deformation of rubber material and its results are compared with those of a simplified theory equation. The predicted dynamic material properties based on non-linear static finite element analyses have a good agreement of experimental results and those based on simplified theory equation.

  • PDF

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.

Adsorption Property of Silicone Rubber Sticking Chuck for OLED Glass Substrate

  • Kim, Jin-Hee;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • 제50권1호
    • /
    • pp.55-61
    • /
    • 2015
  • Manufacturing process of OLED contains adsorption-desorption process of glass substrate. There are several adsorption methods of glass substrate such as atmospheric pressure, vacuum and electrostatic adsorption. However, these methods are very complex to connect system. Therefore, the adsorption method using silicone rubber based sticking chuck was proposed in this study. Three types of silicone rubbers having 0, 19.3 and 32.2 wt% of fluorine were used and their mechanical properties, surface energies and adsorption properties were examined. According to the results ${\sigma}_{300}$ and hardness increased with increasing fluorine contents, but elongation was decreased. Also, fluorosilicone rubber containing 32.2 wt% of fluorine showed the lowest surface tension, among three types of rubber and resulted in the highest initial tack with glass substrate. After the adsorption-desorption test of 300,000 cycles was performed, the adsorption force of S-1 (silicone rubber) decreased largely from 2.34 to 0.73 MPa. However, the S-3 (fluorosilicone rubber having 32.2 wt%. of fluorine) decreased only from 3.15 to 2.24 MPa. From this study, we obtained the valuable equations related to long term durability of silicone based sticking chuck. Finally the transfer of silicone rubber to glass substrate with the adsorption-desorption process was not occurred and this phenomenon was examined by UV-Visible spectroscopy.

고무 패드 성형 공정의 유한요소 모델링 (Finite Element Modeling of Rubber Pad Forming Process)

  • 신수정;이태수;오수익
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.