• Title/Summary/Keyword: rubber surface

Search Result 698, Processing Time 0.053 seconds

Study on the Change of Physical Properties with Silica Contents in Solution Styrene-Butadiene Rubber (SSBR)/Silica Composites

  • Kim, Tae Yeop;Won, Sung Yeon;Kang, Shin Hye;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • The optimum mixing conditions of silica and silane containing rubber composites were evaluated by investigating the properties of rubber composites prepared with a silica composition of 10, 20, 40, 60, and 80 g, respectively. The crosslinking rate decreased with increasing silica content, with he promoters being adsorbed on the silica surface with in the rubber composite. As a result, the increase in crosslinking time resulted in the destruction of the silica structure. The increase of the bound rubber content due to the destruction of the silica structure inhibited the chain motion of the polymer molecules and reduced the cohesion of the silica itself. Finally, the increase of silica content showed the increase of hardness, tensile strength, and storage modulus of rubber composites.

Wax Barrier Effect on Migration Behaviors of Antiozonants in NR Vulcanizates (천연고무 가류물에서 왁스막이 오존노화방지제의 이동에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • Waxes compounded into rubber migrate to the surface and form a protection film on the rubber surface. In general, antiozonants were used with wax to protect ozonation of rubber. Influence of wax barrier formed on the surface of a rubber vulcanizate on migration of antiozonants was studied using natural rubber (NR) vulcanizates containing various type waxes. IPPD (N-isopropyl-N'-phenyl-p-phenylenediamine), HPPD (N-l,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), SBPPD (N,N'-di(sec-butyl)-p-phenylenediamine), and DMPPD (N,N'-di(1,4-dimethylpentyl)-p-phenylenediamine) were employed as antiozonants. Migration experiments were performed at constant temperatures of 60 and $80^{\circ}C$ for 10, 20, 30 days using a convection oven. The migration rates of the antiozonants in the vulcanizate without wax are faster than those in the vulcanizates containing waxes. The antiozonants migrate slower in the vulcanizate containing wax with a high molecular weight distribution than in the vulcanizate with a low one. The migration rates of DMPPD and SBPPD are faster than those of HPPD and IPPD.

  • PDF

Surface Modification of Polymeric Material Using Atmospheric Plasma (대기압 플라즈마를 이용한 고분자 소재의 표면개질)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.433-439
    • /
    • 2008
  • An atmospheric plasma pre-treatment method was applied to polyurethane foam (density: 0.27) and rubber (butadiene rubber) to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of treatment gas (nitrogen, argon, oxygen, air), rate of gas flow ($30{\sim}100\;mL/min$), and treated time ($0{\sim}30\;s$) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of polyurethane foam 10 s and rubber 3 s for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the wettability of the polyurethane foam and rubber also resulted in the improvement of the adhesion.

Filler-Elastomer Interactions. 6. Influence of Oxygen Plasma Treatment on Surface Properties of Carbon Blacks (충전재-탄성체 상호작용. 6. 산소 플라즈마 처리가 카본블랙표면특성 미치는 영향)

  • Cho, Ki-Sook;Zoborski, M.;Slusarski, L.;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.99-106
    • /
    • 2002
  • In this work, the surface properties and mechanical interfacial properties of the carbon blacks treated by oxygen plasma were investigated. The surface properties of carbon black by oxidation process of oxygen plasma were studied in acid-base surface value, zeta potential, and X-ray photoelectron spectroscopy (XPS). And their mechanical interfacial properties of the carbon black/rubber composites were evaluated by the composite tearing energy ($G_{III}c$). As a result, it was found that the introduction rate of oxygen-containing polar functional groups, such as carboxyl, hydroxyl, lactone, and carbonyl groups, onto the carbon black surfaces was increased by increasing the plasma treatment time. It revealed that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the carbon black surfaces, resulting in improving the tearing energy ($G_{III}c$) of the carbon black/acrlyonitrile butadiene rubber composites.

EFFECT OF VARIOUS MECHANICAL TREATMENTS ON TITANIUM PLASMA SPRAYED IMPLANT SURFACES (Titanium plasma sprayed implant에 관한 여러가지 기계적 표면처리방법이 implant표면조도에 미치는 영향)

  • Yu, Hyeon-Seok;Park, Jae-Wan;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.493-506
    • /
    • 1993
  • For maintenance of an ailing or failed implant it is essential to treat the implant fixture surface so as to remove bacterial endotoxin and make a surface tolerated by surrounding soft and hard tissue. Thus in this study the method that makes the smoothest surface treated with a high speed diamond bur, a low speed diamond bur, a stone, a rubber point or Jetpolisher was studied. With the profilomenter a mean value of $R_{max}$ was measured. The hight speed diamond, the rubber point and the Jetpolisher showed a mean $R_{max}\;7.77{\mu}m$. The low speed diamond bur, the rubber, point and the Jetolisher made a mean value of $R_{max}\;8.44{\mu}m$. The stone, the rubber point and the Jetolisher showed the smoothest surfaces with a mean value of $R_{max}\;6.24{\mu}m$. TPS (titanium plasma sprayed) areas showed a mean vlaue of $R_{max}\;24.42{\mu}m$, and the smooth surfaced titanium disc manufactured by the company (IMZ, Germany) shows a mean value of $R_{max}\;3.00{\mu}m$. Under the SEM examination the disc treated with a high speed diamond bur, a rubber point and a Jetpolisher showed partially remaining TPS particles, but the height of these particles were reduced remarkably compared with those of the original TPS. The disc treated with a low speed diamond bur, a rubber point and a Jetpolisher showed a rough topography with remaining TPS on the entire surface. A stone, a rubber point and a Jetpolisher removed almost TPS and the bulk titanium metal was exposed and some scratches were made by the stone. All treated discs were revealed as rougher than the smooth surface disc manufactured by the company. An untreated TPS disc shows a very irregular surface and a $40{\mu}m$ height of the plasma sprayed areas.

  • PDF

Degradation Behavior and Micro-Hardness Analysis of a Coolant Rubber Hose for Automotive Radiator (자동차용 냉각기 고무호스의 노화거동과 미소경도분석)

  • Kwak, Seung-Bum;Shin, Sei-Moon;Shin, Wae-Gi;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.915-923
    • /
    • 2007
  • Rubber hoses for automobile radiators are apt to be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature increased. On account of the penetration of coolant liquid into the skin part influenced by the electro-chemical degradation(ECD) test the weight of the rubber hose increased, whereas their failure strain and IRHD hardness decreased. The hardness of the hose in the side of the negative pole was the most deteriorated at the test site of the hose skin just below the coolant surface.

Relation between Surface degradation and Anti-pollution Characteristics in RTV Silicone Rubber (RTV 실리콘 고무의 표면열화와 내오손 특성과의 상관관계)

  • 연복희;이태호;허창수;이상엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.598-606
    • /
    • 2000
  • In this paper we investigated the relation between the surface degradations and anti-pollution characteristics of Room Temperature Vulcanized(RTV) silicone rubber coating that has different roughness through immersing into saline water. We utilized several analytic techniques such as atomic force microscopy(AFM) scaning electron microscopy(SEM) contact angle Salt Deposit Density(SDD) and average leakage current under the condition of salt fog. It is found that the surface roughness of treated RTV silicone rubber increased and the hydrophobicity of sample surface decreased with increasing the duration o immersion into water due to the erosion of base polymer the melting down alumina trihydrate(ATH) and the diffusion of Low Molecular weight(LMW) fluid. Despite the roughness of surface had been increased by water immersion excellant anti-pollution and recovery characteristics were maintained and SDD saturated to 0.1~0.14mg/cm$^2$. The average leakage current under salt fog increased with surface roughness. Measurement of average leakage current will be helpful to investigate surface degradation and lifetime expectation of RTV silicone coating.

  • PDF

Study on the Mechanical Properties of Compounding Chopped Fiber and Rubber (슈퍼섬유 Chopped fiber와 고무와의 Compound에 따른 기계적 물성연구)

  • Lee, Jun Hee;Lee, Kwang-Woo;Byon, Young-Hoo
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.183-188
    • /
    • 2016
  • The uniformly dispersed p-Aramid chopped fiber in a variety of rubber was investigated. The cross section and surface properties in a variety of rubber were characterized by scanning electron microscopy(SEM), weight, tensile strength, cold resistance measurements. The 1mm p-Aramid chopped fiber better uniformly dispersed than the other p-Aramid chopped fiber. The p-Aramid of lmm chopped fiber showed excellent adhesion in rubber composite because of homogeneous dispersion. Consequently, the best 1mm chopped fiber and rubber improved the strength of the composite.

Interfacial Adhesion Properties of Oxygen Plasma Treated Polyketone Fiber with Natural Rubber (폴리케톤 섬유의 산소 플라즈마 처리에 따른 천연고무와의 계면접착 특성)

  • Won, Jong Sung;Choi, Hae Young;Yoo, Jae Jung;Choi, Han Na;Yong, Da Kyung;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Recently developed polyketone fiber has various applications in the mechanical rubber goods as reinforcement because of its good mechanical properties. However, its surface is not suitable for good adhesion with the rubber matrix. Thus, a surface modification is essential to obtain the good interfacial adhesion. Plasma treatment, in this study, has been conducted to modify the surface of the polyketone fiber. The morphological changes of the fibers by oxygen plasma treatment were observed by using SEM and AFM. The chemical composition changes of PK fiber surface treated with oxygen plasma were investigated using an XPS (X-ray photoelectron spectroscopy). Finally, the effect of these changes on the interfacial adhesion between fiber and rubber was analyzed by using a microdroplet debonding test. By the plasma treatment, oxygen moieties on the fiber surface increased with processing time and power. The surface RMS roughness increases until the proper processing condition, but a long plasma processing time resulted in a rather reduced roughness because of surface degradation. When the treatment time and power were 60 s and 80 W, respectively, the highest interfacial shear strength (IFSS) was obtained between the PK fiber and natural rubber. However, as the treatment time and power were higher than 60 s and 80 W, respectively, the IFSS decreased because of degradation of the PK fiber surface by severe plasma treatment.

A Study on the Effect of Petroleum Resin on Vibration Damping Characteristics of Natural Rubber Composites

  • Yun, Yu Mi;Lee, Jin Hyok;Choi, Myoung Chan;Kim, Jung Wan;Kang, Hyun Min;Bae, Jong Woo
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.201-208
    • /
    • 2021
  • In this study, the effect of petroleum resin on the mechanical strength, morphology, and vibration damping characteristics of natural rubber (NR) composites was observed. The NR composites plasticized by adding petroleum resin showed decreased hardness and mechanical properties. A morphology analysis indicated that as the amount of petroleum resin increased, carbon black aggregates (or agglomerates) observed at the fracture surface decreased, resulting in an improvement in the dispersibility. In addition, as 20 phr of petroleum resin was added, the effective damping temperature range increased by approximately 11.4%, the hysteresis loss rate increased by 15.2%, and the resilience decreased by 36.6%. Therefore, it was confirmed that the vibration damping characteristics improved with the addition of petroleum resin. This was because the rubber-filler interaction between the NR molecular chain of the NR composite and the carbon black particles improved by the addition of petroleum resin.