• Title/Summary/Keyword: rubber spring

Search Result 123, Processing Time 0.027 seconds

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

Shaking Table Tests of a 1/4-Scaled Steel Frame with Base Isolators (1/4축소 철골구조물을 이용한 건물 기초분리장치의 진동대실험)

  • 송영훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.39-48
    • /
    • 1997
  • New form of base isolators made of steel spring coated with both natural and artficial rubber were manufactured and tested for material properties. Shaking table experiments were performed using a model structure attached with the bearings. The model structure used in the test is a 1/4 scaled steel structure, and earthquake records were used to check the lateral and vertical stability and effectiveness of the isolators. According to the results all three types of isolators turned out to be effective in reducing the acceleration induced by the earthquake vibration.

  • PDF

The energy dissipation mechanism of ship and fender system by vessel collision (선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘)

  • Hong Kwan-Young;Lee Gye-Hee;Ko Jae-Yong;Lee Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

A Study on Optimal Design Factors of Frictional bearing for Isolated Bridges (교량의 마찰형 지진격리장치 최적 인자 결정에 관한 연구)

  • 고현무;박관순;김동석;송현섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.451-458
    • /
    • 2002
  • To secure structures from strong earthquakes occurred recently and design economically seismic isolation design is spread rapidly. Specially, frictional isolator has superiority in application to bridge because it has many advantages. however, because isolator lies between pier and girder, responses of pier and superstructure contradict each other and we need to control the two responses to minimize the bridge's failure probability. In this study, frictional coefficient and horizontal stiffness is defined as design parameters of frictional isolator. the optimal design parameters of frictional isolator to minimize the bridge's failure probability are presented according to strength of earthquake and soil conditions. The result says that optimal friction coefficient is higher as the strength of earthquake is increased. And it is also higher as the soils are more flexible. But, optimal horizontal stiffness of rubber spring is insensitive to strength of earthquake and soil condition.

  • PDF

Performance Analysis of the Rubber Belt type CVT System (고무 벨트식 무단변속기 시스템의 성능분석)

  • Kim, Sung-Mo;Zheng, Chun-Hua;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.376-381
    • /
    • 2011
  • CVT(Continuously Variable Transmission) is one of the most promising candidates for the future automobile transmission because of its continuously variable gear ratio and reduced shift shock. It is also possible to operate the power source at its high efficiency region with CVT. The CVT system consists of thrust plate, driving pulley, belt, driven pulley, and preload spring of output shaft. In this paper, the dynamic modeling of a CVT system is completed to obtain the static performances of CVT system. A simulator is implemented on Matlab(Simulink), which can analyse the static performances of a CVT system. The methods for improving the total efficiency of a motorcycle system are also proposed based on the simulation results. In this study we increase the capacity factor of CVT up to the three times of default specification.

Adaptive tuned dynamic vibration absorbers working with MR elastomers

  • Zhang, X.Z.;Li, W.H.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.517-529
    • /
    • 2009
  • This paper presents the development of a new Adaptive Tuned Dynamic Vibration Absorber (ATDVA) working with magnetorheological elastomers (MREs). The MRE materials were fabricated by mixing carbonyl iron particles with silicone rubber and cured under a strong magnetic field. An ATDVA prototype using MRE as an adaptable spring was designed and manufactured. The MRE ATDVA worked in a shear mode and the magnetic field was generated by a magnetic circuit and controlled through a DC power supply. The dynamic performances or the system transmissibility at various magnetic fields of the absorber were measured by using a vibration testing system. Experimental results indicated that this absorber can change its natural frequency from 35Hz to 90Hz, 150% of its basic natural frequency. A real time control logic is proposed to evaluate the control effect. The simulation results indicate that the control effect of MRE ATDVA can be improved significantly.

Drop Test for Landing Gear with Rubber Spring Shock Absorber (러버 스프링 방식 착륙장치 낙하시험)

  • Jung, Seung-Tack;Lee, Seung-Gyu;Yang, Jin-Yeol;Lee, Sung-Jin;Kim, Sung-Chan;Song, Jung-Heon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.631-634
    • /
    • 2011
  • 항공기용 착륙장치의 완충기 충격흡수 성능은 해석 과정을 거쳐 예측한 값과 낙하시험을 수행하여 그 성능을 입증하여야 한다. 이는 미 연방 항공 규정에서 요구하고 있는 사항이다. 본 논문에서는 착륙장치 낙하시험을 위한 설비, 시험절차 및 시험방법과 낙하시험 수행 결과를 제시한다.

  • PDF

Evaluation of rubber spring for rail vehicle and application on the floor for increasing sound insulation properties (철도차량용 방진고무의 동특성 평가 및 상구조 차음 성능 증대를 위한 적용)

  • Lee, Tae-Wook;Kim, Jong-Nyeun;Lee, Hwa-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.778-782
    • /
    • 2004
  • Floating floor structure, which is mainly adopted for reducing interior noise of railway vehicle, is known that it is superior to single wall in respect of sound transmission loss. The dynamic characteristic of the support in the floating floor that is one of the important design variables in floating floor structure can change the sound and vibration insulation properties of it. From excitation test, the dynamic stiffness and loss factor of the support are evaluated. They are used as input parameter for analyzing the sound transmission loss of floating floor. Predicted transmission loss is compared with the prototype-car test results.

  • PDF

Analysis and Countermeasure for Shock-proof Performance of Laptop Computers (노트북 컴퓨터의 충격성능 분석 및 대책)

  • 임경화;윤영한;안채헌;김진규;이승은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.490-495
    • /
    • 2001
  • This paper deals with an analysis and countermeasure for improving the shock performance of laptop computers. The shock analysis is carried out by using the commercial program of LS-DYNA3D. Also the analysis is verified by the measurements from modal tests and shock tests. The available countermeasures are investigated theoretically and experimentally to find the effective methods of reducing the shock acceleration on hard disk driver during one side fall test. The hard disk drive is the most sensitive part in a laptop computer. This research shows the effects of the spring constant of rubber pad, the reinforcement of mechanical parts and the location of a hard disk driver, on the shock reduction.

  • PDF

MODELING AND PARAMETER IDENTIFICATION FOR A PASSIVE HYDRAULIC MOUNT

  • Zhang, Y.X.;Zhang, J.W.;Shangguan, W.B.;Feng, Q.Sh.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 2007
  • A lumped parameter model is proposed for the analysis of dynamic behaviour of a Passive Hydraulic Engine Mount (PHEM), incorporating inertia track and throttle, which is characterized by effective and efficient vibration isolation behaviour in the range of both low and high frequencies. Most of the model parameters, including volume compliance of the throttle chamber, effective piston area, fluid inertia and resistance of inertia track and throttle are identified by an experimental approach. Numerical predictions are obtained through a finite element method for responses of dynamic stiffness of the rubber spring. The experiments are made for the purpose of PHEM validation. Comparison of numerical results with experimental observations has shown that the present PHEM achieves good performance for vibration isolation.