• Title/Summary/Keyword: rubber asphalt

Search Result 86, Processing Time 0.022 seconds

The Comparative Study on Attached Performance of the Rubber Asphalt Membrane-Sheet Composite Waterproof by Difference of the Specific Gravity of the Petroleum Resin (석유수지 비중차를 이용한 고무아스팔트 도막-시트 복합방수의 부착성능 비교 연구)

  • Yoon, Sung Hwan;Park, Wan Goo;Kim, Dong Bum;Park, Jin Sang;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.130-131
    • /
    • 2017
  • The combined waterproofing technique, which forms the waterproofing layer of two or more substances, is characterized by forming a waterproof layer, which is characterized by the formation of waterproof layers and the thickness of the waterproofing layer is inherently formed. In this study, it is intended to verify the integrity of the material through the manufacture of materials for special purpose waterproofing methods, primarily for the manufacture of composite waterproofing materials and composite waterproofing methods using cement materials and materials.

  • PDF

Adhesion Performance Change of Positive-side Installed Rubber Asphalt Waterproof Sheet Integrated with Water-Soluble Film in Accordance to Wetness Condition (수용성 필름이 일체화된 역타설 고무 아스팔트 방수시트의 콘크리트 타설시 가수 여부에 따른 부착성능 변화 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Kim, Chun-Hag;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.229-230
    • /
    • 2019
  • Integrated water-soluble film is dissolved in the rubber asphalt waterproof sheet to secure adhesive strength on freshly cast concrete on the adhesion side of waterproofing layer on the floor slab. In addition, in order to determine whether the water in the concrete slurry can dissolve the water-soluble film sufficiently, the adhesive strength of the waterproofing sheet was compared between difference wetness condition at the upper part of the concrete specimen before the concrete casting.

  • PDF

A Study on the Storage Stability of Waste Vinyl-Modified Asphalt (폐비닐로 개질된 아스팔트의 저장안정성에 관한 연구)

  • Kim, Kang-San;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • It is said that polymer modified asphalt using polyethylene as modifier would show phase separation due to density difference and incompatibility between asphalt and polyethylene. In this study, to prevent coalescence of polyethylene in asphalt, we employed peroxides as phase separation inhibitor. On microscope, peroxides (dicumyl peroxide, lauroyl peroxide) with waste vinyl (comprising low density polyethylene) did not show phase separation, however, rheometer test showed phase separation at molecular level, i.e., polyethylene and asphalt are immiscible ultimately. Mechanical properties (tensile strength, Marshall stability, dynamic stability) showed waste vinyl-modified asphalts are highly resistant to plastic deformation and these properties are even better than those of Superphalt.

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Evaluation of Stripping and Rutting Properties of CRM Modified Asphalt Mixtures (CRM 개질아스팔트 혼합물의 소성변형 및 박리저항 특성)

  • Doh, Young-S.;Park, Tae-W.;Kim, Hyun-H.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.149-158
    • /
    • 2007
  • Evaluation of the asphalt mixture modified with crumb rubber modifier(CRM) was performed to estimate possibility of using it as a paying material. OACs(optimum asphalt content) of CRM modified asphalt mixtures by dry process and wet process were determined by Marshall mix design and Wheel tracking test and moisture susceptibility test by freezing and thawing were carried out with CRM modified asphalt mixtures at OACs. The results from these tests, resistance of permanent deformation of CRM modified asphalt mixtures were superior to one of AP-5 while showing very low resistance of moisture sensitivity by freezing and thawing. This means that CRM modified asphalt mixtures are very sensitive to freezing and thawing. However, CRM modified asphalt mixture with anti-stripping material showed high improvement to resistance of moisture susceptibility by freezing and thawing. Therefore, it is recommended that when CRM mixtures were used in domestic, CRM modified asphalt mixtures should be with prevention against freezing and thawing resistance by moisture susceptibility.

  • PDF

Evaluation of Adhesiveness with Current Flow Time in the Indirect Heating of an Asphalt Pad using Joule Heating (줄 히팅을 이용한 아스팔트패드 간접가열에 있어서 통전시간별 융착성 평가)

  • Bae, Ki-Man;Choi, Han-Suk;Oh, Bo-Ra-Mi;Baek, Jong-Jin;Park, Seong-Hwan;Kang, Myungchang;Lee, Jae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.104-109
    • /
    • 2020
  • Recently, vibration and noise have become an important issue in the auto industry. Asphalt vibration damping pads are used to reduce the noise and vibration of automobile bodies, and asphalt is used for many mass-produced parts due to its simple attachment process and low processing costs. In this study, the self-adhesion of asphalt pads using Joule heating was evaluated. To create the asphalt pad for the experiment, the asphalt pad was molded into a specific thickness by using SGACC material and rubber used in the vehicle body as a main component and a modified resin and filler. The SGACC material was 200 mm in length, 200 mm in width, and 0.7 mm in thickness. The asphalt pad was 200 mm in length, 100 mm in width, and 3 mm in thickness. The equipment was composed of a TR (Transformer) DC254kVA and a TC (Time controller) for a current of up to 20,000 A. The current for the Joule heating was set to 7.0 kA and a 3/1 cycle, for which the adhesion of the asphalt pad over the current flow time was evaluated.