• Title/Summary/Keyword: rsm

Search Result 1,247, Processing Time 0.028 seconds

Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity (잡곡당화음료 제조 최적 조건 탐색 및 항당뇨 활성 평가)

  • Lee, Jae Sung;Kang, Yun Hwan;Kim, Kyoung Kon;Yun, Yeong Kyeong;Lim, Jun Gu;Kim, Tae Woo;Kim, Dae Jung;Won, Sang Yeon;Bae, Moo Hoan;Choi, Han Seok;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • Purpose: This study was conducted to establish the production conditions through optimization of the production process of beverages using Aspergillus oryzae CF1001, and to analyze volatile compounds and antidiabetic activity. Methods: The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables gelatinization temperature (GT, $X_1$), saccharogenic time (ST, $X_2$), and dependent variable; ${\Delta}E$ value (y). The condition with the lowest ${\Delta}E$ value occurred with combined 45 min ST and $50^{\circ}C$ GT. The volatile compounds were analyzed quantitatively by GC-MS. Results: Assessment of antidiabetic activity of saccharogenic mixed grain beverage (SMGB) was determined by measurement of ${\alpha}$-glucosidase inhibition activity, and glucose uptake activity and glucose metabolic protein expression by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. Results of volatile compounds analysis, 62 kinds of volatile compounds were detected in SMGB. Palmitic acid (9.534% ratio), benzaldehyde (8.948% ratio), benzyl ethyl ether (8.792% ratio), ethyl alcohol (8.35% ratio), and 2-amyl furan (4.826% ratio) were abundant in SMGB. We confirmed that ${\alpha}$-glucosidase inhibition activity, glucose uptake activity, and glucose-metabolic proteins were upregulated by SMGB treatment with concentration dependent manner. Conclusion: Saccharogenic mixed grain beverage (SMGB) showed potential antidiabetic activity. Further studies will be needed in order to improve the taste and functionality of SMGB.

Optimization of Extraction Conditions for Ethanol Extracts from Chrysanthemum morifolium by Response Surface Methodology (반응표면분석에 의한 소국(小菊) 에탄올 추출물의 추출조건 최적화)

  • Park, Nan-Young;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1189-1196
    • /
    • 1998
  • Extraction conditions were optimized using response surface methodology for preparing high-quality ethanol extracts from cultivated Chrysanthemum petals. A fractional factorial design was applied to investigate effects of solvent ratio to sample $(X_1)$, ethanol concentration $(X_2)$ and extraction time $(X_3)$ at $60^{\circ}C$ on dependent variables of the extract properties, such as yellow color $(Y_1)$, carotenoids $(Y_2)$, soluble solids $(Y_3)$, phenolic compounds $(Y_4)$, electron donating ability $(Y_5)$, sensory color $(Y_6)$ and sensory aroma $(Y_7)$. Second-order models were employed to generate 3-dimensional response surfaces for dependent variables and their coefficients of determination $(R^2)$ were ranged from 0.8063 to 0.9963. Optimum extraction conditions for each variable were 115 mL/g, 97%, 18 hr in yellow color, 145 mL/g, 50%, 12 hr in carotenoids, 147 mL/g, 48%, 17 hr in soluble solids, 116 mL/g, 68%, 17 hr in phenolic compounds, 110 mL/g, 98%, 14 hr in electron donating ability, 101 mL/g, 48%, 54 hr in organoleptic color and 109 mL/g, 54%, 4 hr in organoleptic aroma, respectively. The range of optimum conditions at 16hr extraction for maximized characteristics of ethanol extracts was $103{\sim}122\;mL/g$ and $64{\sim}78%$. Predicted values at the optimum condition agreed with experimental values.

  • PDF

Fermentation Property of Chinese Cabbage Kimchi by Fermentation Temperature and Salt Concentration (발효온도 및 소금농도에 따른 배추김치의 발효 특성)

  • Chang, Moon-Jeong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.7-11
    • /
    • 2000
  • The effects of fermentation temperature$(0{\sim}l5^{\circ}C)$ and salt concentration$(1.5{\sim}4.0%)$ on the fermentation property of Chinese cabbage Kimchi were analyzed by response surface methodology. The pH decreased and acidity increased with increasing fermentation time. The reduction and increment velocities of pH and acidity were increased by increasing fermentation temperature and decreasing salt concentration. The optimum pH 4.2 was reached within $14{\sim}24$ days at $5{\sim}15^{\circ}C$, while pHs of 24 days at $0{\sim}5^{\circ}C$ were still lower value than 4.2. The effect of salt concentration more affected terminal fermentation period than initial fermentation period. The maximum edible acidity, 0.75%, was reached within 8 days at $15^{\circ}C$, while acidifies of 24 days at $0^{\circ}C$ were $0.35{\sim}0.43%$. The effects of salt concentration at $0^{\circ}C$ was higher than those at $15^{\circ}C$. The fermentation time, fermentation temperature and salt concentration were the first, second and third affecting factors on the pH and acidity of Kimchi. Based on the coefficients of determination, pH and acidity were highly fitted to the experimental data$(r^2>0.9276)$. For the suitable acidity range, $0.40{\sim}0.75%$, the edible period of Kimchi at $15^{\circ}C,\;10^{\circ}C\;and\;5^{\circ}C$ were 4 days, 10 days and 18 days at the 2.75% of salt concentration, respectively. The edible period increased from 14 days to 19 days with increased salt concentration from 1.50% to 4.00% at $5^{\circ}C$ of fermentation temperature.

  • PDF

Optimization of spray drying conditions of soft persimmon and milk mixture using response surface methodology (반응표면분석법을 이용한 홍시와 우유혼합물의 최적 분무건조 조건)

  • Park, Mi-Jeong;Kim, Sang-Bum;Kim, Sook-Jin;Kim, Kyung-Mi;Choi, Song-Yi;Chang, Mi;Kim, Gi-Chang
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.957-964
    • /
    • 2017
  • The purpose of this study was to determine the optimum spray drying conditions of soft persimmon latte using response surface methodology that is a statistical procedure used for optimization studies. A central composite design was applied to investigate the effects of independent variables, inlet temperature ($X_1$), air flow rate ($X_2$), and feed flow rate ($X_3$), on responses such as yield, water absorption index, and total phenolic compounds. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield of 8.11 g was obtained at $90^{\circ}C$ of $X_1$, 51.82 mL/min of $X_2$ and 7.00 mL/min of $X_3$. A minimum water absorption index of 0.58 was obtained at $101^{\circ}C$ of $X_1$, 60.00 mL/min of $X_2$ and 17.00 mL/min of $X_3$. A maximum total phenolic compounds of $298.02{\mu}g/mL$ was obtained at $90^{\circ}C$ of $X_1$, 43.33 mL/min of $X_2$ and 17.00 mL/min of $X_3$. In conclusion, the best spray drying conditions were as follows: $X_1$, $90^{\circ}C$; $X_2$, 53 mL/min; $X_3$, 17 mL/min. Under those optimal conditions, the powder's yield (7.46 g), water absorption index (0.54), and the content of total phenolic compounds ($294.75{\mu}g/mL$) were estimated.

Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran (파이롯트 규모에서 미강을 이용한 해양미생물 Cellulophaga lytica LBH-14 유래의 cellobiase 생산)

  • Cao, Wa;Kim, Hung-Woo;Li, Jianhong;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.542-553
    • /
    • 2013
  • The aim of this work was to establish the optimal conditions for the production of cellobiase by a marine bacterium, Cellulophaga lytica LBH-14, using response-surface methodology (RSM). The optimal conditions of rice bran, ammonium chloride, and the initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for the production of cellobiase were 91.1 g/l, 9.02 g/l, and 6.6, respectively. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}_{7H2}O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for the production of cellobiase were 4.46, 0.36, 0.27, and 0.73 g/l, respectively. The optimal temperatures for cell growth and for the production of cellobiase by C. lytica LBH-14 were 35 and $25^{\circ}C$, respectively. The maximal production of cellobiase in a 100 L bioreactor under optimized conditions in this study was 92.3 U/ml, which was 5.4 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of cellobiase by C. lytica LBH-14. The time for the production of cellobiase by the marine bacterium with submerged fermentations was reduced from 7 to 3 days, which resulted in enhanced productivity of cellobiase and a decrease in its production cost. This study found that the optimal conditions for the production of cellobiase were different from those of CMCase by C. lytica LBH-14.

반응표면분석에 의한 쇠고기 야채 쌀죽의 이화학적 및 관능적 특성 변화

  • 이용욱;금준석;은종방
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.167.2-168
    • /
    • 2003
  • 현대 사회는 서구적인 식생활의 변화로 인해 조리가 간편하고 조리 시간이 짧은 즉석식품과 영양 기호식품을 동시에 충족시켜주는 음식에 대한 소비가 늘고 있는 실정이다. 또한 최근 미곡의 공급량에 비해서 소비량이 해마다 감소하여 재고미의 증가를 볼 때, 쌀의 새로운 이용방법 모색이 절실히 요망된다. 따라서 쌀의 소비촉진과 현대사회의 소비형태를 접목시켜서 쇠고기와 야채를 이용한 즉석쌀죽을 개발하고자 하였다. 쇠고기, 야채 및 쌀가루를 이용한 soup mix의 최적 배합비를 설정하기 위하여 제조조건에 따라 다르게 제조한 쇠고기 야채 쌀죽의 이화학적 및 관능적 특성에 미치는 변화를 조사하였다. 이때 야채의 배합비에 따른 이화학적 및 관능적 특성을 모니터링 하고자 반응표면분석법 (response surface methodology, RSM)을 이용하였다. 요인변수(Xn)를 쌀의 양에 대한 버섯의 비율 (X$_1$), 당근의 비율 (X$_2$), 대파의 비율 (X$_3$)로 하여 중심합성계획에 따라 17실험구로 구분하여 조리실험을 실시하였고, 반응변수(Yn)는 soup mix를 이용하여 제조한 쇠고기 야채 쌀죽의 이화학적 특성인 색도의 L*값 (Y$_1$), a*값 (Y$_2$), b*값 (Y$_3$), 점도(Y$_4$), 퍼짐성 (Y$_{5}$), 고형분 함량(Y$_{6}$), PH (Y$_{7}$)으로 하였으며 관능적 특성인 색 (Y$_{8}$), 향 (Y$_{9}$), 점성 (Y$_{10}$), 맛 (Y$_{11}$), 전체적인 기호도 (Y$_{12}$)를 종속변수로 하여 회귀분석에 이용하였다. 회귀분석에 의한 모델식의 예측에는 SAS (statistical analysis system)program을 사용하였으며, 3차원 반응표면 분석법으로 해석하였다. 야채의 배합비에 따라 제조한 쇠고기 야채 쌀죽의 물리적 특성인 색도의 L*, a*, b* 값에 대한 반응표면 회귀식의 $R^2$은 각각 0.6098(p> 0.05), 0.8803 (p <0.05), 0.6781(p> 0.05)로서 b값에 있어서 그 유의성이 5%수준에서 인정되어 b값에 미치는 영향이 크다는 것을 알 수 있었다. L*값은 63-68사이로, a*값은 0.13에서 -0.89사이를 b*값은 2-5값 사이에서 변화하여 제조한 죽의 색이 옅은 황색임을 알 수 있었다. 고형분 함량, 퍼짐성과 pH에 대한 $R^2$은 각각 0.4280, 0.5433과 0.2406임을 볼 때 버섯, 당근, 대파의 비율에 따라 제조한 쇠고기 야채 쌀죽의 고형분 함량, 퍼짐성과 pH는 설정된 범위내에서 그 유의성이 인정되지 않아 큰 영향을 미치지 않음을 알 수 있었다. 관능검사 결과, 색과 향에 대한 반응표면 회귀식의 $R^2$은 각각0.6000과 0.7825이고 P-value는 각각 0.4290과 0.0942로서 5% 수준에서 유의한 상관성이 없음을 확인할 수 있었다. 맛과 점성에 대한 $R^2$은 0.8717과 0.8068이고 P-value는 각각 0.0195 (p <0.05)와 0.0612로서 야채의 배합비에 따라 맛에 있어서 유의확률 5%수준에서 그 유의성이 인정되었으며, 전체적인 기호도에 대한 유의성은 $R^2$이 0.8463이고 P-value는 0.0344 (p <0.05)임을 볼 때, 설정된 범위내에서 야채의 배합비에 따라 제조한 쇠고기 야채 쌀죽의 맛과 기호도에 큰 영향을 미치는 것을 알 수 있었다. 그리고 최대 임계점이 버섯의 첨가량은 0.99%, 당근의 첨가량은 0.97%, 대파의 첨가량은 0.59%에서 최적 반응표면을 나타내었다. 이상의 결과로 볼 때, 야채의 배합비에 따른 맛과 전체적인 기호도에 있어서 그 유의성이 5%수준에서 모두 유의한 상관관계를 보였으며, soup mix 제조시 쌀가루 양에 대한 야채의 최적 배합비는 버섯, 당근, 대파에 있어서 각각 0.99, 0.97과 0.59%임을 알 수 있었다.

  • PDF

Esterification Reaction of Animal Fat for Bio-diesel Production (바이오디젤 생산을 위한 동물성 오일의 에스테르화 반응)

  • Kim, Sung-Min;Kim, Deog-Keun;Lee, Jin-Suk;Park, Soon-Chul;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.102-110
    • /
    • 2012
  • In this study, the production of bio-diesel from animal oil by esterification and trans-esterification was investigated. There were three different extraction methods for oil extraction from raw animal fat. Heterogeneous catalysts such as Amberlyst-15 and Amberlyst BD-20 and a homogeneous catalyst such as sulfuric acid were used for esterification. Among three catalysts, the removal efficiency of Free Fatty Acid (FFA) was the highest in sulfuric acid. Response surface method was carried out to find the optimal esterification condition of sulfuric acid and methanol. After the esterification under the optimal condition, this animal fat was used for the trans-esterification. Animal oil used for trans-esterification was below 1% of FFA content and 0.09% of water content. The catalysts for trans-esterification were KOH, NaOH and $NaOCH_3$. To investigate the effects of catalyst type and amount on trans-esterification, The amount of catalyst were changed with 0.3, 0.6 and 0.9 wt%. The molar ratio of methanol/oil was changed with 4, 6, 9 and 12. The amount of catalyst was fixed to 0.8 wt%. The KOH catalyst showed the highest FAME conversion for trans- esterification, and the optimal methanol/oil weight ratio was 6. In the experiments of various catalysts and methanol molar ratios, the highest content of FAME is 96%. However, this FAME content was below Korean bio-diesel standard which is 96.5% of FAME content. After distillation, FAME content increased to 98%.

Effects of Additives on the Improvement of Frozen Dough Quality (첨가물이 냉동반죽의 품질향상에 미치는 영향)

  • Lee, Young-Chun;Jeong, Hyung-Won;Yoon, Suk-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.217-225
    • /
    • 2004
  • This study was carried out to reduce the loss of frozen dough quality during frozen storage. Using response surface method, ascorbic acid 160.4 ppm, L-cysteine 63.1 ppm, and SSL 0.6% were found to be optimum, with xanthan gum 0.3% (formula A) and Ultra tex-3 5% (formula B) added as cryoprotectants. During frozen storage at $-20^{\circ}C$, control rapidly deteriorated after 4 weeks, while formulas A and B showed slight deterioration with immutable quality after 10 weeks.

Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry (미강을 이용한 해양미생물 Bacillus atrophaeus LBH-18 유래의 carboxymethylcellulase 생산의 최적화)

  • Kim, Yi-Joon;Cao, Wa;Lee, Yu-Jeong;Lee, Sang-Un;Jeong, Jeong-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1295-1306
    • /
    • 2012
  • A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was $30^{\circ}C$. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.

Optimization for the Process of Ethanol of Persimmon Leaf(Diospyros kaki L. folium) using Response Surface Methodology (반응표면분석법을 이용한 감잎(Diospyros kaki L. folium) 에탄올 추출물의 최적화)

  • Bae, Du-Kyung;Choi, Hee-Jin;Son, Jun-Ho;Park, Mu-Hee;Bae, Jong-Ho;An, Bong-Jeon;Bae, Man-Jong;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.218-224
    • /
    • 2000
  • The efforts were made to optimite ethanol extraction from persimmon leaf with the time of extraction$(1.5{\sim}2.5\;hrs)$, the temperature of extraction$(70{\sim}90^{\circ}C)$, and the concentration of ethanol$(0{\sim}40%)$ as three primary variables together with several functional characteristics of persimmon leaf as reaction variables. The conditions of extraction was best fitted by using response surface methodology through the center synthesis plan, and the optimal conditions of extraction were established. The contents of soluble solid and soluble tannin went up as the concentration of ethanol went up and the temperature of extraction went down, and the turbidity went down as the concentration of ethanol went down. Electron donation ability was hardly affected by the extraction temperature and had the tendency to go up as the concentration of ethanol went up. The inhibitory activity of xanthine oxidase(XOase) had the tendency to go up as both the concentration of ethanol and the temperature of extraction went up. The inhibitory activity of angiotensin converting enzyme(ACE), the significance of which still was not recognized, showed the maximum when the concentration of ethanol was 27%. In result, the optimal conditions of extraction was the extraction time of two hours, the extraction temperature of $75{\sim}81^{\circ}C$, and the ethanol concentration of $33{\sim}35%$.

  • PDF