• Title/Summary/Keyword: rpoH

Search Result 42, Processing Time 0.022 seconds

Cloning and Nucleotide Sequence Analysis of the rpoH Gene from Methylovorus sp. Strain SS1 DSM11726 (Methylovorus sp. Strain SS1 DSM11726으로부터 rpoH 유전자의 클로닝과 염기서열 분석)

  • Eom, Chi-Yong;Song, Seung-Eun;Park, Mi-Hwa;Kim, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Using complementation of RpoH deficient E. coli strain A7448, the rpoH gene encoding heat shock sigma factor 32 (${\sigma}^{32}$) from Methylovorus sp. strain SS1 DSM11726 was cloned and sequenced. Sequence analysis of a stretch of 1,796-bp revealed existence of an open reading frame encoding a polypeptide of 284 amino acid (32,006 dalton). Deduced amino acid sequence of the Methylovorus sp. strain SS1 RpoH showed that 59.6%, 39.1% and 51.4% identities with those of Nitrosomonas europaea (${\beta}$-proteobacteria), Agrobacterium tumefaciens ($\alpha$-proteobacteria) and E. coli (${\gamma}$-proteobacteria). The expression level of the functional ortholog of RpoH of Methylovorus sp. strain SS1 was increased transiently after heat induction, further indicating that it functions as a heat shock sigma factor.

Understanding Rifampicin Resistance in Tuberculosis through a Computational Approach

  • Kumar, Satish;Jena, Lingaraja
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.276-282
    • /
    • 2014
  • The disease tuberculosis, caused by Mycobacterium tuberculosis (MTB), remains a major cause of morbidity and mortality in developing countries. The evolution of drug-resistant tuberculosis causes a foremost threat to global health. Most drug-resistant MTB clinical strains are showing resistance to isoniazid and rifampicin (RIF), the frontline anti-tuberculosis drugs. Mutation in rpoB, the beta subunit of DNA-directed RNA polymerase of MTB, is reported to be a major cause of RIF resistance. Amongst mutations in the well-defined 81-base-pair central region of the rpoB gene, mutation at codon 450 (S450L) and 445 (H445Y) is mainly associated with RIF resistance. In this study, we modeled two resistant mutants of rpoB (S450L and H445Y) using Modeller9v10 and performed a docking analysis with RIF using AutoDock4.2 and compared the docking results of these mutants with the wild-type rpoB. The docking results revealed that RIF more effectively inhibited the wild-type rpoB with low binding energy than rpoB mutants. The rpoB mutants interacted with RIF with positive binding energy, revealing the incapableness of RIF inhibition and thus showing resistance. Subsequently, this was verified by molecular dynamics simulations. This in silico evidence may help us understand RIF resistance in rpoB mutant strains.

Sigma S Involved in Bacterial Survival of Ralstonia pseudosolanacearum (Ralstonia pseudosolanacearum 생존에 관여하는 Sigma S 역할)

  • Hye Kyung Choi;Eun Jeong Jo;Jee Eun Heo;Hyun Gi Kong;Seon-Woo Lee
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.148-156
    • /
    • 2024
  • Ralstonia pseudosolanacearum, a plant pathogenic bacterium that can survive for a long time in soil and water, causes lethal wilt in the Solanaceae family. Sigma S is a part of the RNA polymerase complex, which regulates gene expression during bacterial stress response or stationary phase. In this study, we investigated the role of sigma S in R. pseudosolanacearum under stress conditions using a rpoS-defective mutant strain of R. pseudosolanacearum and its wild-type strain. The phenotypes of rpoS-defective mutant were complemented by introducing the original rpoS gene. There were no differences observed in bacterial growth rate and exopolysaccharide production between the wild-type strain and the rpoS mutant. However, the wild-type strain responded more sensitively to nutrient deficiency compared to the mutant strain. Under the nutrient deficiency, the rpoS mutant maintained a high bacterial viability for a longer period, while the viability of the wild-type strain declined rapidly. Furthermore, a significant difference in pH was observed between the culture supernatant of the wild-type strain and the mutant strain. The pH of the culture supernatant for the wild-type strain decreased rapidly during bacterial growth, leading to medium acidification. The rapid decline in the wild-type strain's viability may be associated with medium acidification and bacterial sensitivity to acidity during transition to the stationary phase. Interestingly, the rpoS mutant strain cannot utilize acetic acid, D-alanine, D-trehalose, and L-histidine. These results suggest that sigma S of R. pseudosolanacearum regulates the production or utilization of organic acids and controls cell death during stationary phase under nutrient deficiency.

Frequency and Type of Disputed rpoB Mutations in Mycobacterium tuberculosis Isolates from South Korea

  • Jo, Kyung-Wook;Lee, Soyeon;Kang, Mi Ran;Sung, Heungsup;Kim, Mi-Na;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.3
    • /
    • pp.270-276
    • /
    • 2017
  • Background: A disputed rpoB mutation is a specific type of rpoB mutation that can cause low-level resistances to rifampin (RIF). Here, we aimed to assess the frequency and types of disputed rpoB mutations in Mycobacterium tuberculosis isolates from South Korea. Methods: Between August 2009 and December 2015, 130 patients exhibited RIF resistance on the MTBDRplus assay at Asan Medical Center. Among these cases, we identified the strains with disputed rpoB mutation by rpoB sequencing analysis, as well as among the M. tuberculosis strains from the International Tuberculosis Research Center (ITRC). Results: Among our cases, disputed rpoB mutations led to RIF resistance in at least 6.9% (9/130) of the strains that also exhibited RIF resistance on the MTBDRplus assay. Moreover, at the ITRC, sequencing of the rpoB gene of 170 strains with the rpoB mutation indicated that 23 strains (13.5%) had the disputed mutations. By combining the findings from the 32 strains from our center and the ITRC, we identified the type of disputed rpoB mutation as follows: CTG511CCG (L511P, n=8), GAC516TAC (D516Y, n=8), CTG533CCG (L533P, n=8), CAC526CTC (H526L, n=4), CAC526AAC (H526N, n=3), and ATG515GTG (M515V, n=1). Conclusion: Disputed rpoB mutations do not seem to be rare among the strains exhibiting RIF resistance in South Korea.

Rapid detection of Rifampicin- resistant M, tuberculosis by PCR-SSCP of rpoB gene (결핵균의 rpoB유전자 PCR-SSCP법에 의한 Rifampicin 내성의 신속 진단)

  • Shim, Tae Sun;Yoo, Chul-Gyu;Han, Sung Koo;Shim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.842-851
    • /
    • 1996
  • Background : Rifampicin(RFP) is a key component of the antituberculous shon-course chemotherapy and the RFP-resistance is a marker of multi-drug resistant(MDR) M. tuberculosis. rpoB gene encodes the ${\beta}$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. Recent reports show that rpoB gene mutations are the cause of RFP resistance of M. tuberculosis and the main mechanism of rpoB gene mutation is point mutation. And PCR-SSCP is a rapid and easy method for detecting point mutations. So we performed PCR-SSCP of rpoB gene of M. tuberculosis and compared the result with traditional RFP sensitivity test. Method : The 27 RFP sensitive M. tuberculosis culture isolates and 25 RFP resistant isolates were evaluated. The RFP sensitivity test was done at the Korean Tuberculosis istitute. The DNA was extracted by bead beater method and was amplified with primers TR-8 and TR-9 in a 20ul PCR reaction containing 0.1ul(luCi) [${\alpha}-^{32}P$] - dCTP. After amplification, SSCP was done using non-denaturaring polyacrylamide gel electrophoresis. Then direct sequencing was done in cases of different eletrophoretic mobility compared with that of H37Rv. In 19 cases, we compared PCR-SSCP results with patient's clinical course and the results of traditional RFP sensitivity test. Results : 1) All 27 RFP sensitive M. tuberculosis isolates showed the same electrophoretic mobility compared with that of H37Rv. And all 25 RFP resistant M. tuberculosis isolates showed different electrophoretic mobility. 2) The mechanism of rpoB gene mutation of M. tuberculosis is mainly point mutation. 3) The PCR-SSCP results correlate well with traditional RFP sensitivity and patient's clinical response to antituberculous treatment. Conclusion: The PCR-SSCP of rpoB gene is a very sensitive and rapid mehod in detecting RFP- resistant M. tuberculosis.

  • PDF

Anaerobic Acid Tolerance Response in Salmonella typhimurium (Salmonella typhimurium의 혐기적 산내성도 평가)

  • Kim, Young-Chan;Lee, Sun;Lee, Kyung-Mi;Im, Sung-Young;Park, Yong-Geun;Baek, Hyung-Seok;Park, Kyung-Ryang;Lee, In-Soo
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.169-175
    • /
    • 1999
  • Salmonella typhimurium can encounter a wide variety of environments during its life cycle. In nature, S. typhimurium can experience and survive dramatic acid stresses that occur in diverse ecological niches ranging from pond water to phagolysosomes. These survival mechanism is aquired by the Acid Tolerance Response(ATR) in Salmonella. The ATR of S. typhimurium is a complex inducible phenomenon in which exposures to slight or moderate low pH will produce a stress response capable of protecting the organism against more severe acid challenges. ATR in Salmonella has two different systems that are called RpoS dependent and independent. We found that ATR in anaerobic was showed RpoS independent because rpoS$\Omega$AP had ATR as S. typhimurium UK1. Using the P22 MudJ(Km, lacZ) operon fusion technique and a lethal selection procedure combining low pH(pH4.5) and sodium acetate(10mM, pH4.5), we isolated LF487 aatA::MudJ which showed acid sensitive in anaerobic condition. aatA locus was determined at 12 min on Salmonella Genetic Map. The survival rate of aatA mutant was showed significantly diminished at pH4.3 than virulent wild type Salmonella in anaerobic condition(5% $CO_2$, 5% H$_2$, 90% $N_2$). Therefore isolated gene was confirmed important gene for anaerobic ATR system.

  • PDF

Transcriptional Analysis Responding to Propanol Stress in Escherichia coli (대장균에서 프로판올 스트레스에 관한 전사분석)

  • Park, Hye-Jin;Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.417-427
    • /
    • 2012
  • We compared the transcriptome in response to propanol stress in wild-type and propanol-resistant mutant Escherichia coli using the DNA microarray technique. The correlation value of RNA expression between the propanol-treated wild type and the untreated-one was about 0.949, and 50 genes were differentially expressed by more than twofold in both samples. The correlation value of RNA expression between the propanol-treated mutant and the untreated one was about 0.951, and 71 genes in two samples showed differential expression patterns. However, the values between the wild type and mutant, regardless of propanol addition, were 0.974-0.992 and only 1-2 genes were differentially expressed in the two strains. The representative characteristics among differentially expressed genes in W3110 or P19 treated with propanol compared to untreated samples were up-regulation of hest shock response genes and down-regulation of genes relating to ribosome biosynthesis. In addition, many genes were regulated by transcription regulation factors such as ArcA, CRP, FNR, H-NS, GatR, or PurR and overexpressed by sigma factor RpoH. We confirmed that RpoH mediated an important host defense function in propanol stress in E. coli W3110 and P19 by comparison of cell growth rate among the wild type, rpoH disruptant mutant, and rpoH-complemented strain.

Polyphosphate Kinase Affects Oxidative Stress Response by Modulating cAMP Receptor Protein and rpoS Expression in Salmonella Typhimurium

  • Cheng, Yuanyuan;Sun, Baolin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1527-1535
    • /
    • 2009
  • Polyphosphate (polyP) plays diverse physiological functions in prokaryotes and eukaryotes, but most of their detailed mechanisms are still obscure. Here, we show that deletion of polyphosphate kinase (PPK), the principal enzyme responsible for synthesis of polyP, resulted in augmented expression of cAMP receptor protein (CRP) and rpoS and lowered $H_2O_2$ sensitivity in Salmonella Typhimurium ATCC14028. The binding of cAMP-CRP complex to rpoS promoter and further stimulation of its transcription were proved through electrophoretic mobility shift assay, lacZ fusion, and exogenous cAMP addition, respectively. The rpoS expression increased in cpdA (cAMP phosphodiesterase coding gene) mutant, further suggesting that cAMP-CRP upregulated rpoS expression. These results demonstrate that PPK affects oxidative stress response by modulating crp and rpoS expression in S. Typhimurium.

Morphological Characteristics and Phylogenetic Analysis of Polygonatum Species Based on Chloroplast DNA Sequences (한국산 둥굴레속 식물의 형태적 특성 및 엽록체 DNA 염기서열을 이용한 유연관계 분석)

  • Kim, Jeong Hun;Seo, Jae Wan;Byeon, Ji Hui;Ahn, Young Sup;Cha, Seon Woo;Cho, Joon Hyeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.489-496
    • /
    • 2014
  • Polygonatum is a genus placed in the family Liliaceae, distributed throughout the Northern Hemisphere and 16 of the species are grown naturally in Korea. In oriental medicine, the rhizomes of Polygonatum have been used as two different medicines, Okjuk (Polygonati odorati Rhizoma) and Hwangjeong (Polygonati Rhizoma). However, it is difficult to identify the morphological and chemical differences between the medicinal groups and thus easy to confuse the one with the other. Therefore, a clear classification standard needs to be established so as to be able to discriminate between them. In the study, the morphological characteristics of the plants, Polygonatum spp., were examined. Then, the differences in SNPs among the DNA sequences of 7 of the Polygonatum spp. and 1 of the Disporum spp. were analyzed by DNA barcoding with rpoC1, rpoB2, matK, and psbA-trnH of the cpDNA region. In the results, three regions, rpoC1, rpoB2, and matK were useful for discriminating the species, P. stenophyllum and P. sibiricum. Furthermore, it was possible to discriminate the individual germplasm within the species by using the combination of the results obtained from rpoB2, rpoC1, and matK.

Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium (병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응)

  • Song, Sang-Sun;Lee, Sun;Lee, Mi-Kyoung;Lim, Sung-Young;Cho, Min-Ho;Park, Young-Keun;Park, Kyeong-Ryang;Lee, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

  • PDF