• Title/Summary/Keyword: rpf gene

Search Result 6, Processing Time 0.016 seconds

Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

  • Cho, Jung-Hee;Yoon, Joo-Mi;Lee, Sang-Won;Noh, Young-Hee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.364-373
    • /
    • 2013
  • It has been known that most regulation of pathogenicity factor (rpf ) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production.

Virulence Reduction and Differing Regulation of Virulence Genes in rpf Mutants of Xanthomonas oryzae pv. oryzae

  • Jeong, Kyu-Sik;Lee, Seung-Eun;Han, Jong-Woo;Yang, Seung-Up;Lee, Byoung-Moo;Noh, Tae-Hwan;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • To define the functions of the rpf genes in Xanthomonas oryzae pv. oryzae (Xoo), which regulates pathogenicity factors in Xanthomonas campestris pv. campestris (Xcc), marker-exchange mutants of each rpf gene were generated. When the mutants were inoculated on a susceptible cultivar, the lesion lengths caused by the rpfB, rpfC, rpfF, and rpfG mutants were significantly smaller than those caused by the wild type, whereas those caused by the rpfA, rpfD, and rpfI mutants were not. Several virulence determinants, including extracellular polysaccharide (EPS) production, xylanase production, and motility, were significantly decreased in the four mutants. However, the cellulase activity in the mutants was unchanged. Complementation of the rpfB and rpfC mutations restored the virulence and the expression of the virulence determinants. Expression analysis of 14 virulence genes revealed that the expression of genes related to EPS production (gumG and gumM), LPS (xanA, xanB, wxoD, and wxoC), phytase (phyA), xylanase (xynB), lipase (lipA), and motility (pitA) were reduced significantly in the mutants rpfB, rpfC, rpfF, and rpfG. In contrast, the expression of genes related to cellulase (eglxob, clsA), cellobiosidase (cbsA), and iron metabolism (fur) was unchanged. The results of this study clearly show that rpfB, rpfC, rpfF, and rpfG are important for the virulence of Xoo KACC10859, and that virulence genes are regulated differently by the Rpfs.

Mutation in clpxoo4158 Reduces Virulence and Resistance to Oxidative Stress in Xanthomonas oryzae pv. oryzae KACC10859

  • Cho, Jung-Hee;Jeong, Kyu-Sik;Han, Jong-Woo;Kim, Woo-Jae;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.89-92
    • /
    • 2011
  • Cyclic AMP receptor-like protein (Clp), is known to be a global transcriptional regulator for the expression of virulence factors in Xanthomonas campestris pv. campestris (Xcc). Sequence analysis showed that Xanthomonas oryzae pv. oryzae (Xoo) contains a gene that is strongly homologous to the Xcc clp. In order to determine the role of the Clp homolog in Xoo, a marker exchange mutant of $clp_{xoo4158}$ was generated. Virulence and virulence factors, such as the production of cellulase, xylanase, and extracellular polysaccharides (EPS) and swarming motility were significantly decreased in the $clp_{xoo4158}$ mutant. Moreover, the mutation caused the strain to be more sensitive to hydrogen peroxide and to over-produce siderophores. Complementation of the mutant restored the mutation-related phenotypes. Expression of $clp_{xoo4158}$, assessed by reverse-transcription realtime PCR and clp promoter activity, was significantly reduced in the rpfB, rpfF, rpfC, and rpfG mutants. These results suggest that the clp homolog, $clp_{xoo4158}$, is involved in the control of virulence and resistance against oxidative stress, and that expression of the gene is controlled by RpfC and RpfG through a diffusible signal factor (DSF) signal in Xanthomonas oryzae pv. oryzae KACC10859.

Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859

  • Noh, Young-Hee;Kim, Sun-Young;Han, Jong-Woo;Seo, Young-Su;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.304-309
    • /
    • 2014
  • The rpf genes and $colS_{XOO1207}/colR_{XOO1208}$ were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, $colS_{XOO3534}$ (raxH)/$colR_{XOO3535}$ (raxR) and $colS_{XOO3762}/colR_{XOO3763}$ were annotated. The $colS_{XOO3534}/colR_{XOO3535}$ were known to control AvrXa21 activity and functions of $colS_{XOO3762}/colR_{XOO3763}$ were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of $colS_{XOO1207}/col-R_{XOO1208}$, $colS_{XOO3534}/colR_{XOO3535}$ and $colS_{XOO3762}/colR_{XOO3763}$ increased 2, 2-7, 3-13 folds respectively. Expression of $colS_{XOO3534}$ and $colS_{XOO3762}$ also increased 2-4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo.

Genome-wide Screening to Identify Responsive Regulators Involved in the Virulence of Xanthomonas oryzae pv. oryzae

  • Han, Sang-Wook;Lee, Mi-Ae;Yoo, Youngchul;Cho, Man-Ho;Lee, Sang-Won
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.

Clinical Meaning of INNO-LiPA Test in the Diagnosis of Rifampin Resistant Tuberculosis (Rifampin 내성 결핵의 진단에서 INNO-LiPA 검사법의 임상적 의미)

  • Chang, Yoon Soo;Kim, Young;Lee, Chang Youl;Choi, Jong Rak;Kim, Hyung Jung;Ahn, Chul Min;Kim, Sung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.4
    • /
    • pp.344-352
    • /
    • 2003
  • Background : The prevalence of multidrug resistant tuberculosis (MDR-TB), resistant to isoniazid (INH) and rifampin (RFP), was 5.3% worldwide in 1995 and its increment has raised important public health problems. Resistance to RFP, one of the key drugs in the treatment of tuberculosis, results in grim clinical outcome. Recently rapid detection of RFP-resistant mutations in rpoB gene based on PCR method has become available. This study evaluated the prevalence of RFP resistance in first diagnosed, treatment failure, and recurred patients using INNO-LiPA test, and compared the results of INNO-LiPA with those of conventional mycobacterial drug susceptibility test. Methods : Forty-six patients, who were diagnosed of pulmonary tuberculosis and had revealed positive sputum AFB smear, were enrolled in this study from 1998 to 2002. The cases were classified as one three groups; first diagnosed, treatment failure, or recurred. RFP resistance was studied using an INNO-LiPA Rif. TB kit and compared with that obtained from drug susceptibility based on M. tuberculosis culture study. Results : Twenty-one out of 46 patients were enrolled under first diagnosis of pulmonary tuberculosis, 17 under treatment failure with first line drugs, and 8 under recurrence. The positive and negative predictive values of INNO-LiPA test in diagnosis in RFP resistant tuberculosis compared with conventional mycobacterial drug susceptibility test were 85.7% and 76.0%, respectively. INNO-LiPA result revealed rpoB gene mutation in 20 (80.0%) out of 25 patients who were diagnosed as treatment failure or recurrence, but in only 4 (19.0%) out of 21 patients who were first diagnosed as pulmonary tuberculosis. Conclusion : This study showed that RFP resistance could be diagnosed rapidly and accurately using INNO-LiPA test and that this test might be helpful for choosing second line anti-mycobacterial drugs. It might be of great help in clinical diagnosis and decision when used in complimentarily with drug susceptibility test based on M. tuberculosis culture.