• Title/Summary/Keyword: row-oriented database system

Search Result 3, Processing Time 0.017 seconds

Performance Comparison of Column-Oriented and Row-Oriented Database Systems for Star Schema Join Processing (스타 스키마 조인 처리에 대한 세로-지향 데이터베이스 시스템과 가로-지향 데이터베이스 시스템의 성능 비교)

  • Oh, Byung-Jung;Ahn, Soo-Min;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.29-38
    • /
    • 2011
  • Unlike in traditional row-oriented database systems, a column-oriented database system stores data in column-oriented and not row-oriented order. Recently, research results revealed the effectiveness of column-oriented databases for applications such as data warehouse and decision support systems that access large volumes of data in a read only manner. In this paper, we investigate the join strategies for column-oriented databases and prove the effectiveness of column-oriented databases in data warehouse systems. For unbiased comparison, the two database systems are analyzed using the star schema benchmark and the performance analysis of a star schema join query is carried out. We experimented with well-known join algorithms and considered early materialization and late materialization join strategies for column-oriented databases. The performance results confirm that star schema join queries perform better in terms of disk I/O cost in column-oriented databases than in row-oriented databases. In addition, the late materialization strategy showed more performance gain than the early materialization strategy in column-oriented databases.

Shadow Recovery for Column-based Databases (컬럼-기반 데이터베이스를 위한 그림자 복구)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2784-2790
    • /
    • 2015
  • The column-oriented database storage is a very advanced model for large-volume data transactions because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly data warehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. In this research, we propose a new transaction recovery scheme for a column-oriented database environment which is based on a flash media file system. We improved traditional shadow paging schemes by reusing old data pages which are supposed to be invalidated in the course of writing a new data page in the flash file system environment. In order to reuse these data pages, we exploit reused shadow list structure in our column-oriented shadow recovery(CoSR) scheme. CoSR scheme minimizes the additional storage overhead for keeping shadow pages and minimizes the I/O performance degradation caused by column data compression of traditional recovery schemes. Based on the results of the performance evaluation, we conclude that CoSR outperforms the traditional schemes by 17%.

Cross Compressed Replication Scheme for Large-Volume Column Storages (대용량 컬럼 저장소를 위한 교차 압축 이중화 기법)

  • Byun, Siwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2449-2456
    • /
    • 2013
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. In this paper, we introduce fast column-oriented data storage model and then propose a new storage management scheme using a cross compressed replication for the high-speed column-oriented datawarehouse system. Our storage management scheme which is based on two MLC SSD achieves superior performance and reliability by the cross replication of the uncompressed segment and the compressed segment under high workloads of CPU and I/O. Based on the results of the performance evaluation, we conclude that our storage management scheme outperforms the traditional scheme in the respect of update throughput and response time of the column segments.