• 제목/요약/키워드: routing congestion

검색결과 152건 처리시간 0.031초

배송 네트워크에서 드론의 유용성 검증: 차량과 드론을 혼용한 배송 네트워크의 경로계획 (Usefulness of Drones in the Urban Delivery System: Solving the Vehicle and Drone Routing Problem with Time Window)

  • 정예림;박태준;민윤홍
    • 한국경영과학회지
    • /
    • 제41권3호
    • /
    • pp.75-96
    • /
    • 2016
  • This paper investigates the usefulness of drones in an urban delivery system. We define the vehicle and drone routing problem with time window (VDRPTW) and present a model that can describe a dual mode delivery system consisting of drones and vehicles in the metropolitan area. Drones are relatively free from traffic congestion but have limited flight range and capacity. Vehicles are not free from traffic congestion, and the complexity of urban road network reduces the efficiency of vehicles. Using drones and vehicles together can reduce inefficiency of the urban delivery system because of their complementary cooperation. In this paper, we assume that drones operate in a point-to-point manner between the depot and customers, and that customers in the need of fast delivery are willing to pay additional charges. For the experiment datasets, we use instances of Solomon (1987), which are well known in the Vehicle Routing Problem society. Moreover, to mirror the urban logistics demand trend, customers who want fast delivery are added to the Solomon's instances. We propose a hybrid evolutionary algorithm for solving VDRPTW. The experiment results provide different useful insights according to the geographical distributions of customers. In the instances where customers are randomly located and in instances where some customers are randomly located while others form some clusters, the dual mode delivery system displays lower total cost and higher customer satisfaction. In instances with clustered customers, the dual mode delivery system exhibits narrow competition for the total cost with the delivery system that uses only vehicles. In this case, using drones and vehicles together can reduce the level of dissatisfaction of customers who take their cargo over the time-window. From the view point of strategic flexibility, the dual mode delivery system appears to be more interesting. In meeting the objective of maximizing customer satisfaction, the use of drones and vehicles incurs less cost and requires fewer resources.

멀티홉 메쉬 네트워크를 위한 부분다중경로 라우팅프로토콜 (Partial multipath routing Protocol for multi-hop mesh network)

  • 이강건;박형근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.598-599
    • /
    • 2015
  • 무선 메쉬네트워크에서 소스 노드로부터 목적지 노드까지 정보를 전달하기 위해서는 멀티홉전송을 통한 효율적인 라우팅기법이 필요로 된다. 멀티홉전송에 있어서 다중경로 라우팅기법을 사용하게 되면 특정 경로가 사용 불능 상태가 되거나 트래픽이 크게 증가하는 경우에도 다중경로를 활용한 안정적 데이터 전송이 가능하게 된다. 본 논문에서는 경로 전체에 대해 다중경로를 사용하는 기존 다중경로 라우팅 기법을 개선하여 일부 열악한 링크 구간만을 다중경로로 전송하는 부분 다중경로라우팅 방식을 제안함으로써 안전하고 빠른 데이터 전송을 보장함과 동시에 불필요하게 전송에 참여하는 노드의 수를 최소화함으로써 노드의 전력소모를 최소화하고 네트워크를 효율적으로 사용할 수 있도록 하였다.

  • PDF

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

DPW-RRM: Random Routing Mutation Defense Method Based on Dynamic Path Weight

  • Hui Jin;Zhaoyang Li;Ruiqin Hu;Jinglei Tan;Hongqi Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3163-3181
    • /
    • 2023
  • Eavesdropping attacks have seriously threatened network security. Attackers could eavesdrop on target nodes and link to steal confidential data. In the traditional network architecture, the static routing path and the important nodes determined by the nature of network topology provide a great convenience for eavesdropping attacks. To resist monitoring attacks, this paper proposes a random routing mutation defense method based on dynamic path weight (DPW-RRM). It utilizes network centrality indicators to determine important nodes in the network topology and reduces the probability of important nodes in path selection, thereby distributing traffic to multiple communication paths, achieving the purpose of increasing the difficulty and cost of eavesdropping attacks. In addition, it dynamically adjusts the weight of the routing path through network state constraints to avoid link congestion and improve the availability of routing mutation. Experimental data shows that DPW-RRM could not only guarantee the normal algorithmic overhead, communication delay, and CPU load of the network, but also effectively resist eavesdropping attacks.

End-to-end Reliable Message Transmission Considering Load Balancing in Wireless Networks

  • Tran, Anh Tai;Kim, Myung Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3094-3109
    • /
    • 2014
  • This paper proposes a load balanced reliable routing protocol called LBR (Load Balanced Reliable routing) in wireless networks. The LBR protocol transmits messages through a reliable path considering the balancing of the traffic load. Recently, the authors have proposed a multipath-based reliable routing protocol called MRFR, which is an appealing protocol for fault tolerant reliable data transmission. However, However, MRFR has no concern with the problem of load balancing, which results in increasing congestion and consuming high energy at some network nodes. As a result, the problem affects negatively the performance of the network. Taking account of load balancing as a route selection criteria can avoid routing through the congested nodes and allows to find better routes. In this paper, we extend MRFR by considering load balancing in the route discovery process of reliable communication. The simulation results showed that the proposed protocol outperforms AODV in terms of end-to-end delay, packet delivery radio, and average jitter. Compared to MRFR, the LBR protocol has the same packet delivery ratio, and obtains a better efficiency of load balancing.

Improving TCP Performance Over Mobile ad hoc Networks by Exploiting Cluster-Label-based Routing for Backbone Networks

  • ;하재열;오후;박홍성
    • 한국통신학회논문지
    • /
    • 제33권8B호
    • /
    • pp.689-698
    • /
    • 2008
  • The performance of a TCP protocol on MANETs has been studied in a numerous researches. One of the significant reasons of TCP performance degradation on MANETs is inability to distinguish between packet losses due to congestion from those caused by nodes mobility and as consequence broken routes. This paper presents the Cluster-Label-based Routing (CLR) protocol that is an attempt to compensate source of TCP problems on MANETs - multi-hop mobile environment. By utilizing Cluster-Label-based mechanism for Backbone, the CLR is able to concentrate on detection and compensation of movement of a destination node. The proposed protocol provides better goodput and delay performance than standardized protocols especially in cases of large network size and/or high mobility rate.

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • 제10권2호
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

Edge-Node Deployed Routing Strategies for Load Balancing in Optical Burst Switched Networks

  • Barradas, Alvaro L.;Medeiros, Maria Do Carmo R.
    • ETRI Journal
    • /
    • 제31권1호
    • /
    • pp.31-41
    • /
    • 2009
  • Optical burst switching is a promising switching paradigm for the next IP-over-optical network backbones. However, its burst loss performance is greatly affected by burst contention. Several methods have been proposed to address this problem, some of them requiring the network to be flooded by frequent state dissemination signaling messages. In this work, we present a traffic engineering approach for path selection with the objective of minimizing contention using only topological information. The main idea is to balance the traffic across the network to reduce congestion without incurring link state dissemination protocol penalties. We propose and evaluate two path selection strategies that clearly outperform shortest path routing. The proposed path selection strategies can be used in combination with other contention resolution methods to achieve higher levels of performance and support the network reaching stability when it is pushed under stringent working conditions. Results show that the network connectivity is an important parameter to consider.

  • PDF

Flow Assignment and Packet Scheduling for Multipath Routing

  • Leung, Ka-Cheong;Victor O. K. Li
    • Journal of Communications and Networks
    • /
    • 제5권3호
    • /
    • pp.230-239
    • /
    • 2003
  • In this paper, we propose a framework to study how to route packets efficiently in multipath communication networks. Two traffic congestion control techniques, namely, flow assignment and packet scheduling, have been investigated. The flow assignment mechanism defines an optimal splitting of data traffic on multiple disjoint paths. The resequencing delay and the usage of the resequencing buffer can be reduced significantly by properly scheduling the sending order of all packets, say, according to their expected arrival times at the destination. To illustrate our model, and without loss of generality, Gaussian distributed end-to-end path delays are used. Our analytical results show that the techniques are very effective in reducing the average end-to-end path delay, the average packet resequencing delay, and the average resequencing buffer occupancy for various path configurations. These promising results can form a basis for designing future adaptive multipath protocols.