• Title/Summary/Keyword: round-trip-time

Search Result 194, Processing Time 0.022 seconds

Determining locations of bus information terminals (BITs) in rural areas based on a passenger round-trip pattern (왕복통행 특성을 이용한 지방부 버스정보안내기(BIT) 지점 선정)

  • Kim, Hyoung-Soo;Kim, Eung-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • This study proposed a method to determine the number and location of bus information terminals (BIT), which is a device to provide passengers with bus arrival time at bus stops in a Bus Information System (BIS). In low-density area, it is not efficient to survey bus demands such as the number of passengers at all bus stops due to time and cost. This kind of a survey would, however, competently cover all bus stops if performed inside the bus. The number of riding-on and -off passengers is observed for every bus stop, and this data collection is repeated over all day. Data obtained from the survey are aggregated each bus stop. This study defines Utility Index (UI), an aggregate each bus stop. Bus stops are ranked according to UI and determined for a BIT within budget limitation. As a case study, a bus line in Jeju island, Korea, was dealt with. This case showed that the more aggregate the better data quality. This study is expected to contribute to solving a location problem of BITs in a BIS.

Active Congestion Control Using Active Router′s Feedback Mechanism (액티브 라우터의 피드백 메커니즘을 이용한 혼잡제어 기법)

  • Choe, Gi-Hyeon;Jang, Gyeong-Su;Sin, Ho-Jin;Sin, Dong-Ryeol
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.513-522
    • /
    • 2002
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization which TCP congestion window size is fluctuated during congestion occurred and if RTT (Round Trip Time) is increased, three duplicate ACK packets is not a correct congestion signal because congestion maybe already disappeared and the host may send more packets until receive the three duplicate ACK packets. Recently there is increasing interest in solving end-to-end congestion control using active network frameworks to improve the performance of TCP protocols. ACC (Active congestion control) is a variation of TCP-based congestion control with queue management In addition traffic modifications nay begin at the congested router (active router) so that ACC will respond more quickly to congestion than TCP variants. The advantage of this method is that the host uses the information provided by the active routers as well as the end points in order to relieve congestion and improve throughput. In this paper, we model enhanced ACC, provide its algorithm which control the congestion by using information in core networks and communications between active routers, and finally demonstrate enhanced performance by simulation.

A Congestion Control Algorithm for the fairness Improvement of TCP Vegas (TCP Vegas의 공정성 향상을 위한 혼잡 제어 알고리즘)

  • 오민철;송병훈;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.269-279
    • /
    • 2004
  • The most important factor influencing the robustness of the Internet Is the end-to-end TCP congestion control. However, the congestion control scheme of TCP Reno, the most popular TCP version on the Internet, employs passive congestion indication. It makes worse the network congestion. Recently, Brakmo and Peterson have proposed a new version of TCP, which is named TCP Vegas, with a fundamentally different congestion control scheme from that of the Reno. Many studies indicate that the Vegas is able to achieve better throughput and higher stability than the Reno. But there are two unfairness problems in Vegas. These problems hinder the spread of the Vegas in current Internet. In this paper, in order to solve these unfairness problems, we propose a new congestion control algorithm called TCP PowerVegas. The existing Vegas depends mainly only on the rtt(round trip time), but the proposed PowerVegas use the new congestion control scheme combined the Information on the rtt with the information on the packet loss. Therefore the PowerVegas performs the congestion control more competitively than the Vegas. Thus, the PowerVegas is able to solve effectively these unfairness problems which the Vegas has experienced. To evaluate the proposed approach, we compare the performance among PowerVegas, Reno and Vegas under same network environment. Using simulation, the PowerVegas is able to achieve better throughput and higher stability than the Reno and is shown to achieve much better fairness than the existing Vegas.

A Study on Traffic analysis for System Optimization of CDMA base station and repeaters (CDMA 기지국과 중계기의 시스템 최적화를 위한 Traffic 분석 기법)

  • Jo, Ung;Chin, Yong-Ohk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.333-341
    • /
    • 2002
  • This article is written to make a foundation for effective radio network engineering by enabling the accurate traffic assumption between Base Station (BTS : Base Station Transceiver Subsystem) md Repeater through the scientific and systematic analysis of mobile traffic dealt within CDMA Base Station. Among these, Repeater, having direct physical connection with BTS, simply does the remote relay function but the volume of the traffic flowed into the repeater is not accountable. The total BTS traffic is the sum of traffic dealt by the BTS and multiple Repeaters. In this article, we tried traffic analysis of this kind by adopting RTD (Round Trip Delay) which is specially designed to measure distribution of the distance between the Base Station and the Mobile station by differentiating the traffic dealt by BTS from traffic dealt by Repeaters. The fact that the connection between mobile station and BTS via Repeater (which is located remotely) yields far more delay than the direct connection between mobile station and BTS is the clue of this article. Based on this fact, Time Delay equipment was put at the receiving side of the Repeater to add certain amount of delay to the traffic to BTS and the result showed that the 99.78% of the traffic can be identified.

Trustworthy Mutual Attestation Protocol for Local True Single Sign-On System: Proof of Concept and Performance Evaluation

  • Khattak, Zubair Ahmad;Manan, Jamalul-Lail Ab;Sulaiman, Suziah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2405-2423
    • /
    • 2012
  • In a traditional Single Sign-On (SSO) scheme, the user and the Service Providers (SPs) have given their trust to the Identity Provider (IdP) or Authentication Service Provider (ASP) for the authentication and correct assertion. However, we still need a better solution for the local/native true SSO to gain user confidence, whereby the trusted entity must play the role of the ASP between distinct SPs. This technical gap has been filled by Trusted Computing (TC), where the remote attestation approach introduced by the Trusted Computing Group (TCG) is to attest whether the remote platform integrity is indeed trusted or not. In this paper, we demonstrate a Trustworthy Mutual Attestation (TMutualA) protocol as a proof of concept implementation for a local true SSO using the Integrity Measurement Architecture (IMA) with the Trusted Platform Module (TPM). In our proposed protocol, firstly, the user and SP platform integrity are checked (i.e., hardware and software integrity state verification) before allowing access to a protected resource sited at the SP and releasing a user authentication token to the SP. We evaluated the performance of the proposed TMutualA protocol, in particular, the client and server attestation time and the round trip of the mutual attestation time.

Modeling of Multimedia Internet Transmission Rate Control Factors Using Neural Networks (멀티미디어 인터넷 전송을 위한 전송률 제어 요소의 신경회로망 모델링)

  • Chong Kil-to;Yoo Sung-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • As the Internet real-time multimedia applications increases, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example satisfying this necessity. The TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that controls the transmission rate that is based on the available round trip time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used in the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.

Beyond the Quality of Service: Exploring the Evaluation Criteria of Airlines

  • Wang, Ray
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.2
    • /
    • pp.221-230
    • /
    • 2014
  • With the progress and prosperity of commerce and industry, time and money increasingly form an equal partnership. Using air carriers to shorten the round-trip time has become an important choice for many people in the tourism process. Faced with increasing competition within the aviation service environment, airline evaluation criteria and the requirements of customers are gradually dominating the evaluation mechanism for air transport service quality. Over the past few years, attention on the transport quality of service has been primarily focused more on land-based transport, and less on the relevant evaluation criteria of airlines. Many studies have shown that quality of service will directly affect customer satisfaction, resulting in the fact that good quality aviation services have become increasingly important. Therefore, in practical industrial operations with limited resources, there is an urgent need to delve into the assessment guidelines that have an impact on customers when they choose an airline, which can be used as a basis for improving customer satisfaction. Through a literature review and a reliability and validity analysis, this study summarized 19 evaluation criteria, using the purposive sampling method and the decision laboratory method (DEMATEL). In addition, this study viewed the causal relationship between the evaluation criteria and the degree of association as a continuing project for airlines. This study selected appropriate empirical samples from two domestic airlines. The conclusions may provide recommendations for all airlines.

A Receiver-Aided Seamless And Smooth Inter-RAT Handover At Layer-2

  • Liu, Bin;Song, Rongfang;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4015-4033
    • /
    • 2015
  • The future mobile networks consist of hyper-dense heterogeneous and small cell networks of same or different radio access technologies (RAT). Integrating mobile networks of different RATs to provide seamless and smooth mobility service will be the target of future mobile converged network. Generally, handover from high-speed networks to low-speed networks faces many challenges from application perspective, such as abrupt bandwidth variation, packet loss, round trip time variation, connection disruption, and transmission blackout. Existing inter-RAT handover solutions cannot solve all the problems at the same time. Based on the high-layer convergence sublayer design, a new receiver-aided soft inter-RAT handover is proposed. This soft handover scheme takes advantage of multihoming ability of multi-mode mobile station (MS) to smooth handover procedure. In addition, handover procedure is seamless and applicable to frequent handover scenarios. The simulation results conducted in UMTS-WiMAX converged network scenario show that: in case of TCP traffics for handover from WiMAX to UMTS, not only handover latency and packet loss are eliminated completely, but also abrupt bandwidth/wireless RTT variation is smoothed. These delightful features make this soft handover scheme be a reasonable candidate of mobility management for future mobile converged networks.

An Optimal Peer Selection Algorithm for Mesh-based Peer-to-Peer Networks

  • Han, Seung Chul;Nam, Ki Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.133-151
    • /
    • 2019
  • In order to achieve faster content distribution speed and stronger fault tolerance, a P2P peer can connect to multiple peers in parallel and receive chunks of the data simultaneously. A critical issue in this environment is selecting a set of nodes participating in swarming sessions. Previous related researches only focus on performance metrics, such as downloading time or the round-trip time, but in this paper, we consider a new performance metric which is closely related to the network and propose a peer selection algorithm that produces the set of peers generating optimal worst link stress. We prove that the optimal algorithm is practicable and has the advantages with the experiments on PlanetLab. The algorithm optimizes the congestion level of the bottleneck link. It means the algorithm can maximize the affordable throughput. Second, the network load is well balanced. A balanced network improves the utilization of resources and leads to the fast content distribution. We also notice that if every client follows our algorithm in selecting peers, the probability is high that all sessions could benefit. We expect that the algorithm in this paper can be used complementary to existing methods to derive new and valuable insights in peer-to-peer networking.

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.