• Title/Summary/Keyword: roughness element

Search Result 147, Processing Time 0.024 seconds

Design and Fabrication of Optical Element for Speckle Reduction in Laser Projector (레이저 프로젝터의 스페클 저감을 위한 광학 소자 설계 및 제작)

  • Lee, Jae-Yong;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.55-60
    • /
    • 2014
  • Laser projector has many advantages of high brightness, high resolution and small size, but the huge drawback of image degradation called speckle which generated by coherence of laser and roughness of surface interrupts their general use. There are many methods to reduce speckle pattern, but they need effective optical systems to realize display to the far field with huge volume. We designed speckle reduction element by using microlens with controlled curvature to reduce spatial coherence. Vibration element was also applied to reduce temporal coherence which considered response time of eye. Designed element was fabricated by simple reflow method and imprinting method. From the results, the fabricated element performed 48.33% of speckle reduction efficiency and 41.29% of optical efficiency with a single doublet lens.

Dynamic Analysis of Vehicle-Bridge System by the Dynamic Condensation Method (Dynamic Condensation Method를 이용한 차량-교량계의 동적해석)

  • Han, Jae-Ik;Lee, Kyeong-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.177-184
    • /
    • 1998
  • The equation of motion on the vehicle-bridge system is established as the simultaneous equations which are combined the equation of vehicle and bridge by the interaction elements. A vehicle element is modeled as lumped masses supported by springs and dashpots, and a bridge element with pavement roughness is modeled as beam elements. An interaction element is defined to consist of a bridge element and the suspension units of the vehicle resting on the element. By the dynamic condensation method, the degrees of the freedom are eliminated, and compared with all the degrees of freedom on the bridge, the efforts of calculation is decreased. Thus, although a very small computational error is occured, the present technique appears to be computationally more efficient. It is particularly suitable for the simulation of bridges with a series of vehicles moving on the deck.

  • PDF

A Study on the Machining Characteristics of Prototype of Roller Gear Cams (롤러 기어 캠의 시제품 가공특성에 관한 연구)

  • Kim, Jin-Su;Kang, Seong-Ki;Lee, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Three-Dimensional Finite Element Modeling for the Yellow Sea - Initial approach -

  • Suh, Seung-Won;M.G.G. Foreman
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.14-14
    • /
    • 1996
  • In order to understand the tidal hydrodynamics of the Yellow Sea and Parts of the East China Sea, we have developed a three-dimensional, fine resolution, nonlinear, harmonic finite element model. Major four tidal constituents, M$_2$, S$_2$, K$_1$ and O$_1$ are used as forcing along the open boundary. Due to the shallowness of the region, tidal results are strongly affected by the bottom roughness coefficients, especially for the quadratic form. (omitted)

  • PDF

Development of Form Rolling Technology for High Precision Worm Using the Rack Dies of Counter Flow Type (Counter Flow 방식의 랙 다이를 이용한 고정 밀도 Worm 전조기술 개발)

  • Ko Dae-Cheol;Lee Jung-Min;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.57-64
    • /
    • 2004
  • The objective of this study is to suggest the form rolling technology to produce high precision worm on the base of three dimensional finite element simulation and experiment. It is important to determine the initial workpiece diameter in form rolling because it affects the quality of tooth profile. The calculation method of the initial workpiece diameter in form rolling is suggested and it is verified by finite element simulation. The form rolling processes of worm shaft used as automotive part using both the rack dies of counter flow type and the roll dies are considered and simulated with the same numerical model as actual process by the commercial finite element code, BEFORM-3D. Deformation modes of workpiece between the form rolling by the rack dies of counter flow type and the roll dies are investigated from the result of simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The surface roughness, the straightness and the profile of worm are measured precisely using the worm shafts obtained from experiment. The results of simulation and experiment in this study show that the form rolling process of worn shaft using the rack dies is decidedly superior to that using roll dies from the aspect of the precision of worm such as the surface roughness, the straightness and the profile of worm.

Effect of friction between metal powder and a mandrel on densification during cold isostatic pressing (냉간 정수압 성형시 금속분말과 맨드렐 사이의 마찰이 분말의 치밀화에 미치는 영향)

  • Lee, Hui-Tae;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1116-1126
    • /
    • 1997
  • The effects of friction between powder and a mandrel on densification behavior of metal powder were investigated under cold isostatic pressing. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into finite element program (ABAQUS) to simulate compaction responses of metal powders during cold isostatic pressing. The friction coefficients between powder and mandrels with different roughness were determined by comparing experimental data and finite element results. Density distributions in the powder compacts were also studied for different friction coefficients. Finite element results were compared with experimental data for pure iron powder under cold isostatic pressing.

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

A Study on the Development and Surface Roughness of Roller Cam SCM415 by 5-Axis Machining (5축 가공에 의한 SCM415 롤러 캠 개발과 표면조도 연구)

  • Kim, Jin Su;Lee, Dong Seop;Kang, Seong Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.397-402
    • /
    • 2013
  • In this study, we carried out the each lines of section, using GC (green silicon carbide) whetstone, the SCM415 material which separated by after and before heat treatments process, in 3+2 axis machining centers for integrated grinding after cutting end mill works, the spindle speed 8000 rpm and feed rate 150 mm/min. For the analysis of the centerline average roughness (Ra), we measured by 10 steps stages. Using Finite element analysis, we found the result of the load analysis effect of the assembly parts, when applied the 11 kg's load on both side of the ATC (Automatic tool change) arm. The result is as follows. For the centerline average roughness (Ra) in the non-heat treatment work pieces, are appeared the most favorable in the tenth section are $0.510{\mu}m$, that were shown in the near the straight line section which is the smallest deformation of curve. In addition, the bad surface roughness appears on the path is to long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.