• Title/Summary/Keyword: roughened surface

Search Result 114, Processing Time 0.027 seconds

Bond Splitting Strength and Behavior of GFRP Reinforcement with Roughened Surface (거친표면 GFRP 보강근의 쪼갬부착파괴강도 및 거동 고찰)

  • Moon, Do-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2011
  • In this experimental study, bond splitting strength and behavior were evaluated through pull-out tests. The tests were conducted on a GFRP rebar with roughened surface which was produced by Canadian manufacturer. The used variables in this study were rebar diameter, cover depth and compressive strength of concrete. For each variable, five specimens were made and tested to obtain good results. The bond splitting behavior was investigated from the relationship of pull-out force and slip. The experimental bond splitting strength was compared with the predicted strength obtained from the equations presented by some researchers. The results of the comparison demonstrated that the strength could be predicted well by using the Harajli et al's equation.

Effects of Surface Modification on Biomimetic Deposition of Apatite in Zr-1Nb (표면변환이 Zr-1Nb합금의 아파타이트 석출에 미치는 효과)

  • Kim, Tae Ho;Cho, Kyu Jin;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.575-580
    • /
    • 2010
  • Effects of the surface modification on the deposition behaviors of apatite crystals in Zr-1Nb plates were studied. Zr-1Nb alloy plates were polished with abrasive papers to have different roughness and some of them were treated in NaOH or coated with collagen before deposition of apatites in the simulated body fluid (SBF). The weight gain due to the deposition of apatite crystals increased as the surface roughness increased in Zr-1Nb. The size of granular apatite crystals were found to be smaller in Zr-1Nb roughened by $162{\mu}m$ abrasive paper than in Zr-1Nb roughened by $8.4{\mu}m$ paper, suggesting the nucleation rate increased with increase of surface roughness. After, 10 days immersion in a SBF, NaOH-treated Zr-1Nb was completely coated with apatite with the deposited apatite weight comparable to that in Ti-6Al-4V. The deposition rate of Zr-1Nb was not appreciably influenced by NaOH treatment unlike the significant influence of NaOHtreatment on the deposition rate of apatite in Ti-6Al-4V. One significant observation in this study is an appreciable increase of the apatite deposition rate after collagen coating both on Zr-1Nb and Ti-6Al-4V plate, which may be caused by the interaction between collagen and $Ca^{+2}$ ions.

Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology

  • Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.111-124
    • /
    • 2013
  • Surface-enhanced Raman scattering (SERS) effect deals with the enhancement of the Raman scattering intensity by molecules in the presence of a nanostructured metallic surface. The first observation of surface-enhanced Raman spectra was in 1974, when Fleischmann and his group at the University of Southampton, reported the first high-quality Raman spectra of monolayer-adsorbed pyridine on an electrochemically roughened Ag electrode surface. Over the last thirty years, it has developed into a versatile spectroscopic and analytical technique due to the rapid and explosive progress of nanoscience and nanotechnology. This review article describes the recent development in field of surface-enhanced Raman scattering research, especially fabrication of various SERS active substrates, mechanism of SERS effect and its various applications in both surface sciences and analytical sciences.

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Marine propeller integrated design Influence of manufacturing strategy on bi-dimensional foil performance

  • Martineau, J.P.;Brient, A.;Hascoet, J.Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.323-324
    • /
    • 2002
  • This paper presents a preliminary study of the influence of roughness due to marine propeller blades machining on their performance. A blade surface finish that has been roughened by corrosion, cavitation and other phenomena, leads to a power penalty. Thus propellers manufacturers tend to propose blades of great surface finish, even mirror-polished. However achieving such surface finish increases manufacturing costs. With modem manufacturing means, propellers can now be machined while preserving a good surface finish. We have studied the influence of manufacturing strategy on an aspect of hydrodynamic performance, cavitation.

  • PDF

Investgation on the Relationships between the Surface Roughness and Film Evaporation (표면거칠기와 액막 증발에 관한 상관 관계 고찰)

  • Kim, Kyun-Seok;Kim, Ig-Saeng;Yoo, Byoung-Hoon;Kim, Do-Hyung;Kim, Chun-Dong;Choi, Ko-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.272-279
    • /
    • 2001
  • The objective of this paper is the investigation of the relationships between the surface roughness and film evaporative characteristics of the surface. For example, when the droplet of liquid is in contact with the solid surface, its behavior strongly depends on the surface characteristics. The material properties and geometry - profile shape, waviness, roughness - of the surfaces have strongly influenced on the wettability of the droplet. To investigate the effect of the surface roughness on the film evaporation, firstly, the characteristics of wettabilities were studied according to contact angle and surface tree energy of specimens with various roughness heights. Secondly, the experimental test were carried out on capacities of the tubes diversly roughened by using different kinds of emery papers. Finally, the relationships between the film evaporation characteristics and surface roughness were explained by means of the correlation of contact angle and surface free energy with surface roughness and the influences of surface tree energy on the heat transfer performance.

  • PDF

Effect of the Hydrophobicity and the Surface Roughness of Support Material on the Microbial Attachment (담체의 소수성과 표면 거칠기가 미생물 부착에 미치는 영향)

  • Park, Young-Seek;Suh, Jung-Ho;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.689-696
    • /
    • 1997
  • This paper discussed effect of the surface roughness and the hydrophobicity of support material on the microbial attachment In a rotating biological contactor. The by- drophoblclty of each support material was determined by the measurement of contact angle of water and the surface roughness was measured by the surface roughness In- strument. Microorganisms have well attached on the surface of more hydrophilic support material like Nylon6 than that of the hydrophobic support material like PE. When the relatively hydrophilic surface was roughen, the microbial attachment was increased but when the relatively hydrophobic surface was roughen, the attachment was slightly In- creased because the hydrophobicity of support material was Increased by roughening the hydrophobic surface. Although both variables, the surface hydrophobicity and the surface roughness, have Influenced the microbial attachment, the influence of the surface roughness overruled that of the surface hydrophobicity. Support material whose surfaces were roughened about 1mm, 6mm and 11mm were allowed for attached 3, 7 and 24hr, but the differences of maximum and minimum attachment of each material gave nearly constant values and similar trend with time.

  • PDF

Experimental Investigation of Drag Reduction by Polymer Additives (중합제 첨가에 의한 항력 감소 효과에 관한 실험적 연구)

  • 성형진;위장우;권순홍;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • Experimental investigation of drag reduction by adding a polymer additive(polyacrylamid, N-401P) into water is carried out in a Circular Water Channel. The effect of viscosity, surface roughness and degradation as a function of running time is also measured with varying the concentration of polymer additives(20ppm,100ppm) and Reynolds numbers. Near and far wakes past a circular cylinder are observed by LDV. Drag forces are measured with a strain-gaged device. The experimental results show that around 5%-30% of drag reduction with the polymer solution are observed. The larger effects of drag reduction can be found at low range of Reynolds number, more roughened surface cylinder. The effect of polymer solution for near wakes is larger than for far wakes.

Influence of Deposition Conditions on the Adhesion of Sputter-deposited MoS$_2$-Ti Films

  • Kim, Sun-Kyu;Yongliang Li
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • MoS$_2$-Ti films were deposited on SKD-11 tool steel substrate by a D.C. magnetron sputtering system. The influence of deposition parameters on the adhesion of the films was investigated by the scratch test. Crosssection morphology was evaluated using FE-SEM. The plasma etching played an important role on the adhesion of the films. The appropriate etching conditions roughened the surface, resulting In the improved adhesion of the film. The adhesion of the film increased with the interlayer thickness up to 110 nm and then decreased slightly with further increasing of interlayer thickness. The adhesion was highest at a bias voltage of -50 V. Further increase of the bias voltage decreased the film adhesion.