• Title/Summary/Keyword: rotor-stator interaction

Search Result 88, Processing Time 0.022 seconds

Permanent Magnet Design for Reduction of Cogging Torque in Innner Rotor Brushless DC Motor (내전형 BLDC 전동기의 코깅 토크 저감을 위한 영구자석의 형상 설계)

  • Kim, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.864-866
    • /
    • 2000
  • In the slotted motor, cogging torque is generated due to the interaction between the rotor magnets and the slots on the stator. It is well known that cogging torque produces vibration and noise which may be detrimental to the performance of position and speed control system. Hence, the prediction of cogging torque is very important at the design stage of BLDC motor. In this paper, permanent magnets with different arc an91e of inner and outer radius is proposed. The cogging torque of proposed model and conventional one is analyzed by 2-D FEM and compared.

  • PDF

Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation (유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components

  • Kang, Dong-Hyuk;Arimoto, Yusuke;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Hah, Chunill;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.137-149
    • /
    • 2010
  • The purpose of the present research is to suppress cavitation instabilities by using a circumferential groove. The circumferential groove was designed based on CFD so that the tip leakage vortex is trapped by the groove and does not interact with the next blade. Experimental results show that the groove can suppress rotating cavitation, asymmetric cavitation and cavitation surge. However, weak instabilities with higher frequency could not be suppressed by the groove. From the analysis of pressure pattern similar to that for rotor-stator interaction, it was found that the higher frequency components are caused by the interaction of backflow vortices with the inducer blades.

The response of a blade row to a three-dimensional turbulent gust

  • Wei, Dingbing;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

A study developing control algorithm for Pumped-Storage Synchronous motor drive (양수발전소 동기전동기의 기동제어 알고리즘에 관한 연구)

  • Kang S.W.;Park S.H.;Kim J.M.;Lim I.H.;Ryu H.S.;Kim J.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.467-471
    • /
    • 2003
  • The large synchronous motor for the pumped-storage plant(or SFC : Static Frequency Converter) has to be brought up to 100$\%$ rated speed and synchronized with the AC power network. Starting the motor from rest is achieved by switching current into the stator winding so that interaction between this stator current and the rotor flux will cause the correct direction of torque to be developed so that the motor turns in the required direction. Starting ranges of the synchronous motor are divided into three regions. The first region Is at standstill, the second that is called by the forced commutation is from standstill to 5-8$\%$ of rated speed, and the third, which is called by the natural commutation, is from 5-8$\%$ of rated speed to 100$\%$ rated speed. So this paper describes three regions of the control techniques of the pumped-storage synchronous motor drive.

  • PDF

Experimental Study on the Aerodynamic Interaction of the Rotor and Stator for the Ducted fan UAV (덕티드 팬 무인기의 동익과 정익 공력상호작용에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.387-391
    • /
    • 2009
  • The experimental study on the ducted fan for the propulsion system of a small UAV has been performed. In this paper, to investigate the three-dimensional unsteady flow field characteristics of the ducted fan, it was measured by using a $45^{\circ}$ inclined hot-wire from hub to tip at inlet, behind the rotor and outlet of the ducted fan. The hot-wire signal data was acquired at fixed yaw angle. The data was averaged by using the PLEAT (Phase Locked Ensemble Averaging Technique), and then three of non-linear equations were solved simultaneously by using the Newton-Rhapson numerical method. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential contour plot.

  • PDF

The Effect on Performance of Disk-type Drag Pump Channel-type (원판형 드래그펌프 채널형상의 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Lee, Seung-Jae;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.816-821
    • /
    • 2003
  • The pumping characteristics of a disk-type drag pump (DTDP) from free molecular flow region to the slip flow region are calculated by the direct simulation Monte Carlo (DSMC) method. In this study, the pumping performance is studied numerically for several channel depths. The interaction between molecules is modeled by variable hard-sphere (VHS). The no time counter method is used as a collision sampling technique. The clearance between rotor and stator is considered an effect on performance. Spiral channels are cut on both upper and lower sides of rotating disks, and stationary disks are planar. A three-dimensional DSMC method for the analysis of steady rarefied flows in a single-stage DTDP has been developed. Velocity and density fields were obtained by the DSMC simulation in the rotor. The present experimental data in the outlet pressure range of $7.5{\times}10^{-3}{\sim}4$ Torr were compared with the DSMC results in the single-stage DTDP. Comparison between the experimental data and DSMC results showed good agreement.

  • PDF

Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU (연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계)

  • Kim, Eui-Youl;Lee, Young-Joon;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

The Characteristics of Efficiency and Torque in $L_1-B_8$ mode USM Having Linear Movement (선형 운동하는 $L_1-B_8$ 모드 초음파 전동기의 효율과 토크 특성)

  • U, Sang-Ho;Shin, Soon-In;Kim, Jin-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.585-588
    • /
    • 2002
  • The USM uses friction between a mobile part (rotor) and a vibration part(stator), which is different from the principle of the conventional motor based on the interaction of electric and magnetic fields. In this thesis, a flat-type $L_1-B_8$ mode USM was designed and fabricated the characteristics of an ultrasonic vibration. The results of fabricated USM are as follows: (1) In case of ultrasonic motor with elastic-body of stainless, when applied voltage, frequency, pressing force of rotor were 50 [V], 27.9 [kHz], 1.5 [N], 5.0[mN m] respectively, the speed of revolution could be presented up to 0 [cm/s]. (2) In case of ultrasonic motor with elastic-body of brass, when applied voltage, frequency, pressing force of rotor were 50 [V], 21.4 [kHz], 1.5 [N], 1.4[mN m]respectively, the speed of rotor revolution was presented up to 0 [cm/s]. (3) The USM of elastic-body of stainless showing 1.17[%], somewhat low, in the maximum efficiency according to torque was superior to the USM of elastic-body of brass showing 0.34 [%]. The Flat-type $L_1-B_8$ mode USM had characteristics of typical drooping torque-speed, large torque and high speed, and operating in both directions by phase reversal.

  • PDF

Performance Test of Sensorless Speed Control Logic for Gas Turbine Starter (가스터빈 기동장치 센서리스 속도제어로직 성능실험)

  • Ryu, Hoseon;Moon, jooyoung;Lee, Uitaek;Lee, Joohyun;Kang, Yunmo;Park, Manki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • The gas turbine static starter rotates the stationary synchronous machine by the interaction of the rotor and the stator. The detection from the initial position of the rotor has been an important issue to drive with optimum torque. Previously, the gas turbine starter was used by attaching the encoder to the synchronous machine, but the position and velocity of the rotor have been estimated by sensor-less method until recently due to the difficulty in attaching and detaching and damage caused by the shaft voltage noise. In this paper, Rotor initial(stationary state) position estimation, forced commutation control(speed less than 10%), and natural commutation control(speed more than 10%) method using magnetic flux with integrated terminal voltage were presented and the sensor-less speed control performance was verified. As a result of making and evaluating the 29 kVA synchronous machine and the starting device, the performance of each control mode was satisfactory. Furthermore, the applied technology is expected to be used for the development of the gas turbine starter of tens of MW class and the field application.