• Title/Summary/Keyword: rotor drive

Search Result 580, Processing Time 0.026 seconds

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

Sensorless Indirect Vector Control of Induction Motor using Sliding Mode Observer (슬라이딩 모드 관측기에 의한 유도전동기 센서리스 벡터제어)

  • Shin, Jong-Ryeol;Kwon, Soon-Man;Lee, Jong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.340-342
    • /
    • 2005
  • This paper describes the speed-sensorless vector control system of a three-phase induction motor using sliding mode flux/speed observer. The sliding mode observer estimates the rotor speed. The error between the actual and observed currents converges to zero which guarantees the accuracy of the flux observer. The convergence of nonlinear time-varying observer along with the asymptotic stability of the controller was analyzed. To define the control action which maintains the motion on the sliding manifold, an "equivalent control" concept was used. It was simulated and implemented on a sensorless indirect vector drive for 750[W] three-phase induction motor. The simulation and experimental results demonstrated the effectiveness of the proposed estimation method.

  • PDF

The vector control performance analysis for driving the parallel connected induction motors (유도전동기 병렬 구동을 위한 벡터제어 제어성능분석)

  • Byun, Yeun-Sub;Bae, Chang-Han;Lee, Byung-Song;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2281-2283
    • /
    • 2004
  • In this paper, we show the vector control performances for the parallel-connected motor drive system using the indirect vector control and the proposed vector control. The suggested estimation scheme of the rotor flux position is presented to reduce the sensitivity due to the load difference between the motors. To confirm the validity of the proposed control method, we compare the simulation results of the proposed control method with those of the conventional indirect vector control method. The simulation results show that the proposed control method is more effective for a change in the load torque.

  • PDF

Development of miniaturized humanoid with new joint mechanism (새로운 관절 기구를 갖는 소형 휴머노이드에 관한 연구)

  • Gang, Taig-Gi;Park, Seong-Hoon;Yi, SooYeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2420-2422
    • /
    • 2004
  • In this paper, we developed a miniaturized humanoid having the new joint mechanism. In general, the high torque actuator and the joint mechanism having three coincided axes are important in development of the miniaturized humanoid. By using the swash plate, which is generally used in three axes rotor mechanism, we developed a new three-coincided-axes joint mechanism and a miniaturized humanoid having the joint mechanism at its hip and ankle joints. Since the joint mechanism has a pair of parallel drive motors for each axis, the driving torque of the joint mechanism is very high. Futhermore, thanks to the three-coincided-axes mechanism, the solution of the inverse kinematics is simple and computationally efficient, and the resulting walking behavior of the humanoid becomes natural.

  • PDF

A Study on the New Parameter Estimation of Induction Motor (새로운 유도전동기의 파라미터 추정에 관한 연구)

  • Lee, D.G.;Oh, S.G.;Kim, J.S.;Kim, G.H.;Kim, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

  • PDF

Sensorless Speed Control of Direct Current Motor using Current Error Compensation (전류오차보상에 의한 직류전동기의 센서리스 속도제어)

  • 함형철;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.930-936
    • /
    • 2003
  • A new method of direct current motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference, the rotor approaches to the model speed, that is, reference value. The performance of direct current motor drives without speed sensor is generally poor at very low speed. However, in this system, it is possible to obtain good speed performance in the low speed range.

Characteristics Analysis of Short Flux-path 4/3 SRM

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • This paper presents a design and characteristics analysis of novel 2-phase 4/3 switched reluctance motor (SRM) with short flux path for an air-blower application. The desired air-blower is unidirectional application, and requires a wide positive torque region without torque dead-zone. In order to get a wide positive torque region without torque dead-zone during phase commutation, asymmetric inductance characteristic with non-uniform air-gap is considered. The proposed motor could be started at any rotor position with high efficiency drive. The proposed 2-phase 4/3 SRM is verified by finite element method analysis.

Sensorless Control of Induction Motor Using Fuzzy-Neural Network (퍼지-신경회로망을 이용한 유도전동기의 센서리스 제어)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.177-180
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

A Study on a Rotor Permanent magnet to affect a Efficiency Improvement of the ETC Motor at a Electric Vehicle (전기자동차에서 ETC Motor의 회전자 영구자석이 효율 향상에 미치는 영향에 관한 연구)

  • Han, Jae-Man;Kim, Dong-Sok;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.637-638
    • /
    • 2008
  • 최근 하이브리드 전기자동차의 관심이 높아짐에 따라 전기적 신호의 연결로 구동 시스템을 구성하는 X-by-wire기술 연구가 활발하게 이루어지고, 있다. 그 중 Drive시스템을 관장하는 Throttle-by-Wire 기술의 일환으로 ETC(Electronic Throttle Control)장치에 대한 연구가 진해되고 있으며, 일부 제품이 출시되고 있다. ETC 구성요소 중 가장 핵심인 모터 설계를 위해 본 논문에서는 우수한 성능을 가지는 BLDC 모터를 선택하고, 기초 설계를 통해 그 형상을 설계하였으며, 보다 더 높은 효율과 출력 토크를 얻기 위해 회전자 영구자석의 재질과 형상을 변화시키며 효율과 출력 토크에 미치는 영향을 살펴보았다.

  • PDF

Decoupled Control of Doubly Fed Induction Machine Fed by SVM Matrix Converter

  • Dendouga, Abdelhakim;Abdessemed, Rachid;Bendaas, Mohamed Lokmane
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.491-498
    • /
    • 2008
  • In this paper a decoupled control of a doubly-fed induction machine(DFIM) feed by a matrix converter is presented. It provides a robust regulation of the stator side active and reactive powers by the direct and quadratic components of the stator current vector, presented in a line-voltage-oriented reference frame. In this case, the stator windings are directly connected to the line grid, while the rotor windings are supplied by this later through a matrix converter controlled by a space vector modulation technique. The proposed solution is suitable for both energy generation and electrical drive applications with restricted speed variation range.