• Title/Summary/Keyword: rotor drive

Search Result 580, Processing Time 0.026 seconds

Induction motor sensor less speed control by stator flux oriented method (고정자 자속 기준 제어 방식에 의한 속도검출기 없는 유도전동기 속도 제어 시스템)

  • Park, Min-Ho;Kim, Kyoung-Seo;Kim, Heui-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.268-272
    • /
    • 1989
  • To avoid the use of position sensor or flux sensor in a field oriented induction machine drive system, the terminal quantities are often used to estimate the rotor flux. Since the estimation involves the leakage inductance of the machine, the performance of such systems is sensitive to the variations of leakage. Since estimation of the stator flux is independent of the leakage, the steady state performance of the stator flux oriented system is insensitive to the leakage inductance. In this paper, the torque response of stator flux oriented system is compared to that of rotor flux oriented system by digital simulation. And induction motor sensor less speed control by stator flux oriented method is developed. The performance of the speed estimation is showed by digital simulation.

  • PDF

Analysis and Detection of Encoder Fault for Vector Controlled Inducton Motor Drives using Power Parity Relations (전력 등가관계를 이용한 벡터제어 유도전동기의 엔코더 고장 해석 및 검출)

  • 류지수;이기상;박태건
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.333-341
    • /
    • 2003
  • In induction motor control systems driven by the indirect vector control scheme, the rotor speed is measured to determine the flux angle which is a key variable in the control algorithm. The most popular way to measure the angular velocity is the use of rotary encoder. Since the errorneous measurement of rotor speed results in incorrect flux angle estimate, the control input generated based on the faulty information should be far from the desired (correct) value and deteriorates the overall control performance. In this paper the effects of encoder fault on motor variables and control performance are analyzed by both theoretical approach and experimental study. A parity equation based on the Power is suggested and applied to detect the incipient fault of encoder.

Maximum Efficiency Control of an Induction Motor Drive by Parameter Adaptive Compensation (파라미터 적응보상에 의한 유도전동기의 최대효율 제어기법)

  • Shon, Jin-Geun;Choi, Myung-Gyu;Park, Jong-Chan;Na, Chae-Dong;Lee, Sung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.162-166
    • /
    • 2000
  • In this paper, a maximum efficiency control technique of real-time processing in which parameter variation is compensated in vector control of an induction motors(I.M.) is proposed. Based on equivalent model of I.M., a loss minimization factor(LMF) with the variations of speed is derived. To solve problem of inaccuracy of LMF curves due to machine parameter variation, rotor resistance estimation is performed by using instantaneous reactive power. The estimated rotor resistance values are applied to the maximum efficiency control with a LMF.

  • PDF

A Characteristic Analysis of Four-Phase 16/12 SRM (4상 16/12극 SRM의 특성해석)

  • Song Hyun-Soo;Lee Dong-Hee;Ahn Jin-Woo;Hao Chen
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.415-418
    • /
    • 2002
  • In the paper, a four-phase 16/12 structure Switched Reluctance motor drive is presented. The construction of the stator and the rotor in the motor, the scheme of the rotor position detector and the main circuit of the power converter are described. The comparison of the four-phase 16/12 motor and the four-phase 816 motor and the comparison of the four-phase 16/12 motor and the three-phase 12/8 motor are made. In the controller, the PWM control variable-speed control, the commutation control, the four quadrants control, the overvoltage protection, the overcurrent protection and the under voltage protection could be achieved. Tested results of the developed prototype are made.

  • PDF

Development of BLDC Motor Controller for Tread Mill Application (Tread Mill 구동용 BLDC 제어기 개발)

  • Ahn Jin-Woo;Lee Dong-Hee;Park Sung-jun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.138-141
    • /
    • 2002
  • BLDCM(Brushless D.C. Motor) is widely used for industrial application because of high efficiency and high power density Especially, in servo system and home appliance, BLBCM is very useful due to high control performance and low acoustic noise. In this paper, 2.5HP rated BLDCM controller and drive was developed for tread mill application. The prototype BLDCM has 4 poles rotor and 24 slots stator. Ferrite was used as a rotor magnet due to the cost and temperature characteristic. For the stable operation of tread mill, over current and high temperature can be detected by the DSP controller. For the commutation signal, switching patterns from the sensorless circuit and hall sensor signal are used in the DSP controller.

  • PDF

Analog Encoder for Precise Angle Control of SRM (SRM의 정밀 각도제어를 위한 아날로그 엔코더)

  • Kim T.H.;An Y.J.;Ahn J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.667-670
    • /
    • 2003
  • In a switched reluctance motor drive, it is important to synchronize the stator phase excitation with the rotor position, because the position of rotor is an essential information. In the high-speed region, switching angles are fluctuated back and forth out of\ the preset value, which is caused by the sampling period of the microprocessor. In this paper, a low cost analog encoder suitable for practical applications is proposed. The validity of the proposed analog encoder with a proper logic controller is verified from the experiments.

  • PDF

Electro-mechanical field analysis of Brushless DC motor due to the driving methods (구동방식에 따른 브러시리스 직류 전동기의 기전 연성 특성 해석)

  • Chang J.H.;Jang G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.659-662
    • /
    • 2003
  • This paper analyzes the electro-mechanical characteristics of the spindle motor in a computer hard disk drive due to the trapezoidal and sinusoidal driving methods. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation for the analysis of the magnetic field. Mechanical motion of a rotor is calculated by solving Newton-Euler equation. Electro-mechanical excitation and dynamic response are characterized by analyzing the free response of a rotating rotor and Fourier analysis of the excitation force.

  • PDF

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

Development of a new hybrid power system (신개념 하이브리드 동력장치 개발)

  • Kim, Nam-Wook;Yoon, Young-Min;Ha, Seung-Bum;Lim, Won-Sik;Park, Young-Il;Lee, Jang-Moo
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.55-59
    • /
    • 2005
  • In this paper, a new drive system(SHS) for hybrid electric vehicle is proposed. As dual rotor hybrid electric vehicle using planetary gearsets, the SHS has the advantages of both series and parallel systems. The output speed and torque of SHS can be determined at specific point regardless of the engine's operating point. When the size of generator which is used in SHS is same as in THS, the SHS has more activities of engine control due to the ability that is operated in lower speed range. To maximize the performance of system, we carried out optimization for the three parameters that are engine, motorl and motor2. As the result of the optimization, we confirmed the SHS is more preferable to THS in fuel consumption and acceleration area.

  • PDF

Fabrication of the Windmill Type Ultrasonic Its Characteristics of Torque and Bidirectional Revolution (풍차형 초음파 전동기의 제작과 토크 및 정$\cdot$역회전특성)

  • Kim, Young-Gyun;Kim, Jin-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.105-109
    • /
    • 2001
  • In this paper, the windmill type ultrasonic motors with 11.35 mm diameter, 2.87 mm thickness of metal endcap and 1.47 g weight were fabricated. Effects of slots and thickness on torque characteristic in the windmill type ultrasonic motor were investigated, when stator's slots were changed from 4, 6, 8 and thickness 0.15 mm, respectively. Specially designed metal endcaps with windmill shaped cutting can provide longitudinal and torsional displacements simultaneously as the ceramic disk vibrates radically. The windmill type ultrasonic motor has only three components: a stator element with windmill shape slotted metal endcap, a rotor and bearing. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The ultrasonic motor fabricated here was the windmill type ultrasonic motor operated by single-phase AC source. Bidirectional revolution using single-phase high frequency for driving the ultrasonic motor was presented.

  • PDF