• Title/Summary/Keyword: rotor drive

Search Result 580, Processing Time 0.022 seconds

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

Fully Digitalized PWM and Vector Control of the Squirrel-Cage Induction Motor (눙형 유도 전동기의 전 디지털화된 PWM 발생 및 벡테제어)

  • 김한태;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.567-573
    • /
    • 1991
  • Full direct digital control of induction motor driver is implemented with a minimal hardware structure. This paper deals with the presentation of a low-cost single-chip microprocessor-based control system for three-phase PWM generation and vector control that control speed of the induction motor using the field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are calculated from rotor angular velocity and stator current. Through simulation and experiment, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

Speed-Sensorless Vector Control of an Induction Motor Using Recursive Least Square Algorithm (RLS 기법을 이용한 유도전동기의 속도센서없는 벡터제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Yu, Ji-Yun;Park, Gwi-Tae;Kim, Nam-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.139-143
    • /
    • 1999
  • This paper is on realization of the speed-sensorless vector control of an induction motor using the RLS(Recursive Least Square) algorithm. The speed estimator is including the RLS algorithm and a rotor flux observer. The RLS algorithm has speed and rotor time constant as parameter vectors and rotor flux observer is designed to have robustness to stator resistance variation and through the IP(Integral and Proportional) speed controller stable performance is obtained for estimating rotor speed. Finally the total algorithm are realized in induction motor drive system and its effectiveness is verified.

  • PDF

A Study on The Broken Rotor Bars in Induction Motor and The Control Characteristics in Inverter

  • Kim K. W.;Lee K. J.;Kwon J. L.;Kim J. K.;Choi K. S.;Lee H. S.;Chang S. G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.365-368
    • /
    • 2001
  • The advantage of the squirrel cage induction motor is the brush less rotor. This advantage for operation and maintenance turns out to be a disadvantage for the detection of the cage rotor bar and endring defects, which means that the detection of cage faults is due to the measurement and analysis of only the stator input signals. The monitoring task in an inverter drive is complicated mainly because the voltage and current waveforms are nonsinusoidal and the high dv/dt values from fast switching inverterd distort the measurements. In this paper, we are going to discuss the detection method of broken rotor bar of the inverter fed squirrel cage induction motor by the motor current signature analysis(MCSA) and the opening terminal voltage signal analysis.

  • PDF

A Study on the Reduction of Cogging Torque of Outer-Rotor Type BLDC Motor for Washing Machines (세탁기용 외전형 BLDC 전동기의 코깅 토오크 저감에 관한 연구)

  • Kim Jae-Min;Chang Cheul-Hyeok;Chung Tae-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.222-230
    • /
    • 2005
  • This paper deals with the reduction of cogging torque of a outer-rotor type BLDC motor mainly used for washing machines. The motor comprises permanent magnet outer-rotor and stator with coils and core. This structure inherently produces vibration and cogging torque because of uneven reluctance according to rotation of the rotor. Up to now, adopted a type of 24 magnet pole and 36 slot-stator. This generates high main torque but accompanies comparatively large cogging torque. This paper proposes a 32-pole 36-slot type motor which reduces cogging torque remarkably. The influence of cogging torque is varied according to pole-slot combinations. The characteristic of the motor was obtained by a two-dimensional finite element method coupled with a drive circuit. The performance of the proposed model is superior to that of the existing model because of the reduction of torque ripple and the improvement of back ernf wave form.

The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor (브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

Indirect angle test method for Switched Reluctance Motor drive (SRM구동을 위한 비간접 각 측정 방식)

  • Choi, J.D.;Kim, M.T.;Hwang, Y.S.;Seong, S.J.;Jeon, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2767-2769
    • /
    • 1999
  • This paper introduces a new rotor position estimation algorithm for the SRM, based on the magnetizing curves only at aligned and unaligned rotor positions. Through basic test method, the complete SRM magenetizing characterization is first constructed, and then used to estimate the rotor position. And also, the optimized phase is selected by phase selector. To demonstrate the promise of this approach. the proposed rotor position estimation algorithm is simulated for variable speed range.

  • PDF

A new vector control method for induction motor (새로운 유도전동기 벡터제어 기법)

  • 변윤섭;왕종배;백종현;박현준
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.680-687
    • /
    • 2000
  • In this paper we present a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme or estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor resistance and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have been presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper new estimation scheme of rotor flux position is presented to eliminate sensitivity due to resistance change with temperature. Simulation results are used to verify the performance of the proposed vector control scheme.

  • PDF

Study for Sensorless Torque Control Scheme of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 토오크제어에 관한 연구)

  • 김윤호;이장선
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.212-216
    • /
    • 1998
  • For a Switched Reluctance Motor(SRM) drive, the important things are 1) reducing torque ripple, 2) improving efficiency, 3) sensorless speed control, 4) accurate position. The position information impotant for the efficiency and smoothness drives. Since SRMs characteristics are nonlinear. It is difficult to estimated phase current in saturation region. This paper describes a method for indirect sensing of the rotor position in SRM which use both voltage and current. The method obtains rotor position by using unconducting phase. The information about the rotor position is achieved by differentiating the unconducting phase current or the voltage gradient. And then, this paper presents a torque control with indirect rotor position detection methods. This torque control is achieved by developing a detailed nonlinear model of the motor.

  • PDF

Design of a New Adaptive Sliding Mode Observer for Sensorless Induction Motor Drive (센서리스 유도전동기를 위한 새로운 슬라이딩 모드 관측기의 설계)

  • 김상민;한우용;김성중
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.522-527
    • /
    • 2003
  • This paper proposes a new speed and flux estimation method which has the robustness against the variation of the electrical parameters of the motor and the superiority in the dynamic characteristics. In the proposed method, the stator currents and the rotor fluxes are observed on the stationary reference frame using the sliding mode concept. And the rotor speed is estimated using the current estimation errors and the observed rotor fluxes based on the Lyapunov stability theory. Also a design method of the observer gain is proposed to minimize the effect of the speed estimation error on the rotor flux observation. The experimental results are shown to verify that the proposed method shows the excellent performances under the variations of motor resistance and inductance.