• Title/Summary/Keyword: rotor core saturation

Search Result 14, Processing Time 0.034 seconds

Magnetic Saturation Effect on the Rotor Core of Synchronous Reluctance Motor

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.634-639
    • /
    • 2011
  • This paper presents a study on the design parameters that consider the magnetic saturation effect in a rotor core of a synchronous reluctance motor. Two important design parameters in a rotor are selected to analyze the saturation effect of a synchronous reluctance motor, particularly in a rotor core. The thickness of the main segment, which is the main path of the d-axis flux, and the end rip, which affects the q-axis flux, are analyzed using the d-axis and q-axis inductances. Moreover, the characteristics of torque and torque ripple when magnetic saturation takes place are analyzed. The saturation effect is verified by comparing the reluctance torque between the experiment and FEM simulation.

Initial Rotor Position Estimation for an Interior Permanent-Magnet Synchronous Motor using Inductance Saturation (인덕턴스의 포화현상을 이용한 IPMSM의 회전자 초기 위치 추정)

  • Park, Nae-Chun;Lee, Yoon-Kyu;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • This paper proposes a new method to acquire an initial rotor position for IPMSM(Interior Permanent Magnet Synchronous Motor) without a position sensor at standstill. The proposed method is based on the variation of inductance caused by the magnetic saturation of stator core. Minimum number of voltage vectors are chosen to determine the initial rotor position. By using the resultant currents in combination with the inductance variation, the north pole and the absolute position of the rotor can be easily obtained. This method also has the advantage of not requiring motor parameters and additional hardware. Its validity is verified by experiments.

Initial Rotor Position Estimation for an Interior Permanent-Magnet Synchronous Motor using Inductance Saturation (인덕턴스의 포화현상을 이용한 IPMSM의 회전자 초기위치 추정)

  • Lee, Yoon-Kyu;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.96-98
    • /
    • 2009
  • This paper propose a method to detect the rotor position of IPMSM(Interior permanent magnet synchronous motor) at standstill without a position sensor. The proposed method is based on current variation caused by the magnetic saturation of stator core as rotor position. By choosing an appropriate voltage vector and applying it to phase winding, it enables the algorithm to discern between a north pole and south pole, and subsequently estimates an absolute position. This method dose not depend on the model of the motor and the motor parameter.

  • PDF

A Study on The characteristics based on the stauration effects of traction motor for korea High Speed Train (한국형 고속전철용 견인전동기의 포화현상에 따른 특성연구)

  • 이상우;김근웅;윤종학;한성수
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.360-367
    • /
    • 1999
  • An inverter-driven induction motor is used as the traction motor for a high speed drive system that required safety, reliabillity, performance, compact size owing to the space and weight alloted for attaching to train, etc. particularly it is possible to happen the saturation effects of flux density at constant voltage-frequency region and then increase very higher than the at lowed capacity of no-load current and temperature in any case. therefore the optimum design of core, optimum voltage-frequency ratio, adoption of high grade magnetic core have been developed and researched for preventing these problems. this paper show the saturation effects of traction rotor by measuring the induced voltage of search coil at stator teeth and presents optimum voltage-frequency ratio as well as optimum core design through the comparison with efficiency, power factor, load current and no-load current for korea high speed train.

  • PDF

An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance

  • Yoon, Myung-Hwan;Kim, Doo-Young;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.

Loss Modeling in order to Predict the Efficiency Performance of Induction Motor Drive System (유도전동기 드라이브 시스템의 효율성능을 예측하기 위한 손실 모델링)

  • 정동화;박기태;이정철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.56-61
    • /
    • 2000
  • The precise and reliable loss model for induction motor and converter system is very important in order to predict the efficiency performance of variable speed drives. This paper proposes an accurate loss model of induction motor and converter system. The motor losses, such as stator and rotor copper loss, core loss and stray loss, are considered for fundamental and harmonic frequencies. Also considered are the skin effect on rotor resistance, temperature effect on bath stator and rotor resistance, magnetizing inductance saturation, and friction and windage loss. All the above features are incorporated in a synchronous frame dynamic d-q equivalent circuit. The converter system, consisting of a diode rectifier and PWM transistor inverter, is modeled accurately for conduction and switching losses. Validity of the models, in both steady state and transient conditions, is verified by simulations.

  • PDF

Design of Prototype Rotary-Lineat Step Motor by the Finite Element Method (유한 요소법에 의한 2자유도 스텝모터의 설계)

  • 정태경;한송엽;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.12
    • /
    • pp.567-572
    • /
    • 1986
  • In this paper, a new type of step motor with two degree of mechanical freedom, which is named rotary-Linear Step Motor(RLSM), is presented. Its rotor axis can perform linear and rotary motions either separately or simultaneously. This paper discribes the design of RLSM using finite element method in which the magnetic saturation effect of the iron core is taken into account. The design parameters such as torques, forces and inductances are obtained from the computed magnetic vector potentials. A new type of Rotary-Linear Step Motor was constructed. The calculated parameters agree well with measurements.

  • PDF

Study on Calculation of Mutual and Self-inductance in SRM with Full-pitched winding (Full-pitched winding SRM에서의 상호(相互) 및 자기(自己) 인덕턴스의 산정에 관한 연구)

  • Baik, Seung-Kyu;Lee, Chi-Woo;Jung, Tae-Uk;Lee, Il-Chun;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.31-33
    • /
    • 1996
  • A SRM develops its torque according to the inductance variation as the rotor position and the phase current. The variation of the inductance and the phase current plays an important role in output characteristics. Predicting and calculating the inductance is invaluable in the study of SRM. This paper suggests the estimation method of inductance as variation of phase current and rotor position considering magnetic saturation of motor core. This method is also applied to full-pitched winding SRM.

  • PDF

Analysis of the Axially Laminated Anisotropic Switched Reluctance Motor by Finite Element Method (유한 요소법에 의한 축방향 성충 스위치드 릴럭턴스 모타의 특성 해석)

  • Park, Jeong-Tae;Jung, Hoon;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.33-36
    • /
    • 1989
  • In designing reluctance motor, it is important to know the flux distribution of the inside of the motor. The reluctance motor which has axially laminated anisotropic(a.l.a.) rotor was proved to have high efficiency. To analyze this motor, it needs to consider the anisotropic characteristic of the rotor. This paper shows the flux distribution of the a.l.a. reluctance motor by finite element method (FEM) considering the anisotropic characteristic and the saturation of the core. And this paper shows the static torque for the variation of the stator dimension. This will be helpful to design the a.l.a. switched reluctance motor.

  • PDF

Core-loss reduction on PM for IPMSM with concentrated winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF