• Title/Summary/Keyword: rotifers biomass

Search Result 20, Processing Time 0.022 seconds

Grazing Rates of Rotifers and Their Contribution to Community Grazing in the Nakdong River

  • Kim, Hyun-Woo;Hwang, Soon-Jin;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.337-342
    • /
    • 1999
  • Rotifer grazing rates in both species and community levels on bacteria and phytoplankton were determined by using representative models (fluorescent beads: 0.75$\mu m$ for bacteria and 10 $\mu m$ for phytoplankton) at biweekly intervals. One-year study at the lower part of the Nakdong River (Mulgum) indicated that the seasonal pattern of rotifer biomass was similar to that of total zooplankton biomass. Total mean biomass of rotifers was significantly higher than that of other groups (rotifers, 148$\pm $327 $\mu g$C/l; cladoceran. 25$\pm 69$$\mu g$C/l; copepodids. 58$\pm 159$$\mu g$C/l). For laboratory grazing experiments. mean specific filtering rate (SFR: $ml\cdot \; l^{-1}\cdot \; day^{-1}$) for rotifers varied from 0.001 to 0.726, and > 90% individuals of rotifer species took up fluorescent microspheres. The high SFRs were achieved by Brachionus angularis, B. calyciflorus, and Filinia longiseta. Community filtering rates (CFRs, $ml\cdot \; l^{-1}\cdot \; day^{-1}$) varied in the range from 2 ~ 1,670. Rotifer filtering rates on phytoplankton were much higher than bacterial filtering rates, especially in the late growing season (May. June, and November). Rotifers appear to be important in transferring both bacterial and phytoplankton carbon to higher trophic levels at the lower Nakdong River.

  • PDF

Calculation and Applicability of Rotifers Biomass (Polyarthra spp.) based on Length-Weight Relationship and Spatial Distribution of Body Length (윤충류 생체량 계산과 적용에 관한 고찰 및 제언: Polyarthra의 체장 분포를 이용한 길이-무게 관계식 및 생체량 비교 분석)

  • Oh, Hye-Ji;Seo, Dong-Hwan;Choi, Moonjung;Jeong, Hyun-Gi;Kim, Hyun-Woo;Oh, Jong Min;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.3
    • /
    • pp.205-211
    • /
    • 2018
  • In this study, we estimated the applicability of length-weight relationship-based biomass calculations by comparison of body length of genus Polyarthra collected from different habitats. Through the comparison, we also tested availability of representative species-specific biomass value of Polyarthra which is often used without length measurement. Polyarthra samples were collected from rivers (Han River and Nakdong River) and reservoir (Paldang Reservoir), and the body length was measured for statistical comparison among habitats and biomass calculations using different equations suggested previously. According to the results, the body length of Polyarthra spp. was significantly different among sampling sites, and the necessity of body length measurement for rotifer species in each situation has been suggested rather than using the representative biomass values which is fixed without considering time and space. Comparison of suggested biomass calculations based on our measured Polyarthra body length, the equation suggested by McCauley showed more reasonable range of biomass values than that suggested by EPA. In addition, in order to calculate more accurate biomass, it is necessary to measure the body length of rotifers, at least more than 44 individuals to reduce error probability to less than 5% with 99% probability. However, since direct measurement of rotifers biomass is limited, it is considered that further analyses are required for more precise application of rotifer biomass of which has high variability due to complex morphologies and species-specific cyclomorphosis often induced by biotic and abiotic factors in the habitats.

Identification of Microzooplankton Seasonality Using Time Series Analysis

  • Park, Gyung-Soo;Harold G. Marshall
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.165-176
    • /
    • 1998
  • Seasonal changes in microzooplankton abundance were identified in the mesohaline Chesapeake Bay and several tributaries from July 1992 through December 1995. Ciliates numerically dominated, comprising over 90% of the total microzooplankton density and aloricate ciliates usually outnumbered loricate ciliates. Copepod nauplii accounted for the highest microzooplankton biomass (>75% in dry weight). Rotifers made small contributions to the total microzooplankton density and biomass (<5%). Time series analysis indicated a twelve month cycle in microzooplankton abundance, and mid-summer(August) peaks for copepod nauplii, and a spring through fall peaks (May-October) for ciliates. Rotifers showed two seasonal peaks: one in mid-summer(August) at the river stations and the other in mid-winter(February) at the mesohaline stations. Seasonal peaks of copepod nauplii and rotifers coincided with the mesozooplankton abundance peak. On the other hand, ciliate maximum usually occurred between the phytoplankton and mesozooplankton peaks. This pattern of microzooplankton seasonality suggests the intermediate trophic role of microzooplankton (especially ciliates) between the phytoplankton(especially picophytoplankton) and mesozooplankton in Chesapeake Bay and its tributaries.

  • PDF

The Application of Zooplankton Assemblage for the Evaluation of Aquatic Environments in Lentic Ecosystems (호소 생태계에서의 수환경 평가를 위한 동물플랑크톤 적용 연구)

  • Hyun-Woo Kim;Yu-Ji Heo;Kyung-Lak Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.83-93
    • /
    • 2023
  • This study compares the abundance and community structure of zooplankton organisms from pelagic regions, and considers particularly the trophic levels vs. zooplankton abundances and biomass. Zooplankton samples were collected three times from May to November 2022, at 30 temperate lakes and reservoirs, which belong to four different river basins. The total zooplankton abundance, biomass and species index were showed considerable spatial variation. The spatial pattern of rotifer abundance was similar to that of total zooplankton abundance, while there were not showed similar patterns of zooplankton biomass (㎍ L-1) in lentic ecosystems. The rotifer strongly dominated the zooplankton assemblage in smaller lentic system than that of larger. A total of 130 species of zooplankton were identified (83 rotifers, 34 cladocerans and 13 copepods). The total average of zooplankton abundance and biomass were 213.7±342.3 Ind. L-1 (n=129) and 1382.8±1850.4 ㎍ L-1, respectively. Total and average of zooplankton abundance were usually dominated by the rotifers (>56.9%), while those of zooplankton biomass were dominated by the cladocerans and copepods (>73.6%) in lentic ecosystems. Considering the Trophic State Index (TSI), the factors of zooplankton abundance and biomass were included in between meso- and eutrophic states(27 lakes, 90% of all). The mean abundance and biomass of zooplankton in eutrophic systems were higher than that of meso- and hypertrophic systems. From this result, we suggest that management strategy for the lentic ecosystem water environment has to be focused more on small-sized lakes and reservoirs, in terms of zooplankton assemblages.

Microzooplankton Assemblages: Their Distribution, Trophic Role and Relationship to the Environmental Variables

  • Park, Gyung-Soo;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • The distribution of microzooplankton and hydrographic variables were measured in the Virginia portion of Chesapeake Bay and its major rivers. Samples were collected at 14 locations at monthly interval from September 1993 through December 1995. Ciliates were numerically dominated (>90%) and copepod nauplii comprised highest proportion of the total microzooplankton biomass (>77%). Copepod nauplii and ciliates were the most abundant at oligohaline water and rotifers at freshwater. Total microzooplankton density and biomass were usually higher at oligohaline stations than fresh water and polyhaline stations. Despite high nutrient concentration and phytoplankton density at eutrophic water, micro- and mesozooplankton biomass were low. Mesozooplankton were relatively abundant at polyhaline stations. The comparison between annual mean biomass of ciliates (12.7 ${\mu$}gC/1) and that of autotrophic picoplankton (13.5 {$\mu$}gC/1) revealed that ciliates were a major consumer of picoplankton production. The secondary production by ciliates was 12.7 ${\mu}$gC/1/day, representing 5% of the annual mean primary production in Chesapeake Bay, Total microzooplankton comprised 84% of the total zooplankton carbon content, representing five times higher than mesozooplankton biomass.

  • PDF

Population Dynamics of Predator (Asplanchna spp.) and its Impact on Herbivorous Rotifers Community in Three Tributaries of the Nakdong River (S. Korea) (낙동강(한국)의 세 지류에서 포식 윤충류 개체군 동태 및 초식 윤충류 군집에 미치는 영향)

  • Kim, Hyun-Woo;Chang, Kwang-Hyeon;Shin, Woon-Kyun;La, Geung-Hwan;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.385-393
    • /
    • 2004
  • The herbivorous rotifers community (Brachionus spp.) and population dynamics of the predator rotifer (Asplanchna spp.) in three tributaries (Kumho R., Nam R., and Hwang R.) of the Nakdong River were evaluated on biweekly intervals from Jan. 2001 and Dec. 2002. High abundance of the herbivorous rotifers (peak density: - ca.>1000 Ind. $L^{-1}$) was observed from two tributaries (Kumho R. and Nam R.) during the spring and fall seasons, respectively. The high peaks of herbivorous rotifers were not evident in one tributary (Hwang R.). Among the herbivorous rotifers, brachionid rotifers (Brachionus spp. consisting of 7 species) were the characteristic rotifer community in this study. Brachionus spp. tended to occur together with the other perennial species, Asplanchna. Asplanchna was also present while two species of B. angularis and B. calyciflorus were highest in density. Subsequently, two populations (B. angularis and B. calyciflorus) rapidly declined, becoming rare after high peaks of Asplanchna occurred, except in one tributary (Hwang R.). We found community shifts in rotifer groups in mid-spring and mid-fall at the study site. The Asplanchna population could be appeared to play an important role in regulating the rotifer community and total plankton biomass in spring and fall at high trophic levels.

The Spring Metazooplankton Dynamics in the River-Reservoir Hybrid System (Nakdong River, Korea): Its Role in Controlling the Phytoplankton Biomass (강-저수지 복합형 시스템내 봄 동물플랑크톤의 역동성 (낙동강, 한국): 식물플랑크톤 생체량 조절자로서의 역할)

  • Chang, Kwang-Hyeon;Jeong, Kwang-Seuk;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.420-426
    • /
    • 2003
  • During a three-year study (2000-2002), dramatic changes in the phytoplankton biomass and high transparency were repeatedly observed during mid-spring in the lower part of the Nakdong River. Rotifers (Brachionus, Keratella, Polyarthra) , sharply increased toward the middle and end of spring. As hydrologic retention time increased (to near 20 days) and water temperature increased from $10^{\circ}C$ to > $20^{\circ}C$ toward the end of spring, small cladocerans noticeably increased. Once phytoplankton biomass passed their peak stage in the mid-spring, a short period (one or two weeks) of relatively low phytoplankton biomass and high Secchi transparencies occurred. Grazing by the zooplankton was highest in spring, thus, it seems that high grazing activities of zooplankton grazing regulated phytoplankton dynamics in the river. The results indicate that the role of zooplankton grazing in controlling the phytoplankton biomass becomes more important during the spring when river water is relatively stagnant.

Grazing on Bacteria and Algae by Metazoans in the Lake-river Ecosystem (River Spree, Germany)

  • Kim, Hyun-Woo;Joo, Gea-Jae;Walz, Norbert
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.111-115
    • /
    • 2008
  • Direct effects of zooplankton grazing activities on the natural assemblage of bacterioplankton and algae were evaluated at monthly intervals, from June to October of 2000, in the middle part of the River Spree, Germany. We quantified bacterioplankton, algae, zooplankton abundance and measured carbon ingestion rates (CIRs) by zooplankton according to two zooplankton size classes: (i) micro zooplankton (MICZ), ranging in size from 30 to $150{\mu}m$ and including rotifers and nauplii, excluding protozoans and (ii) macrozooplankton (MACZ), larger than $150{\mu}m$ and including cladocerans and copepods. CIRs were measured using natural bacterial and algae communities in the zooplankton density manipulation experiments. Algae biomass (average${\pm}$SD: $377{\pm}306{\mu}gC\;L^{-1}$, n=5) was always higher than bacterial biomass ($36.7{\pm}9.9{\mu}gC\;L^{-1}$, n=5). Total zooplankton biomass varied from 19.8 to $137{\mu}gC\;L^{-1}$. Total mean biomass of zooplankton was $59.9{\pm}52.5{\mu}gC\;L^{-1}$ (average${\pm}$SD, n=5). Average MICZ biomass ($40.2{\pm}47.6{\mu}gC\;L^{-1}$ n=5) was nearly twofold higher than MACZ biomass ($19.6{\pm}20.6{\mu}gC\;L^{-1}$ n=5). Total zooplankton CIRs on algae (average${\pm}$SD: $56.6{\pm}26.4{\mu}gC\;L^{-1}\;day^{-1}$) were $\sim$fourfold higher than that on bacteria $(12.7{\pm}6.0{\mu}gC\;L^{-1}\;day^{-1})$. MICZ CIRs on bacteria $(7.0{\pm}2.8{\mu}gC\;L^{-1}\;day^{-1})$ and algae $(28.6{\pm}20.6{\mu}gC\;L^{-1}\;day^{-1})$ were slightly higher than MACZ CIRs. On average, MICZ accounted for 55.6 and 50.5% of total zooplankton grazing on bacteria and algae, respectively. Considering the MICZ and MACZ CIRs, the relative role of transferring carbon to higher trophic levels were nearly similar between both communities in the lake-river ecosystem.

Differences of Zooplankton Development Along a Lake and a River Stretch of the River Spree (Germany) (스프리 강 (독일) 내의 호수와 강 구획에서의 동물플랑크톤 성장의 차이)

  • Joo, Gea-Jae;Walz, Norbert;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.197-205
    • /
    • 2000
  • Factors most strongly related to zooplankton growth rates were studied along a lake and a river stretch in the middle part of the lowland River Spree. The study was conducted at the lake inflow (S1), the lake outflow (S2), and at the end of a 21 km stretch of the outflow (S3) from March to November of 1999. Total zooplankton biomass increased significantly at S2 and then sharply decreased at S3. The abundance of microzooplankton (rotifers and nauplii) was strongly higher than macrozooplankton (cladocerans and copepodids) at all station. However, macrozooplankton biomass (${\mu}$g dw 1$^{-1}$) was similar or much higher than microzooplankton biomass. Large-bodied cladocerans (Daphnia cucullata) dominated at S2 while small-bodied cladocerans (Bosmina longirostris) dominated at S1 and S3. Patterns in growth rates (r$_{t}$ in d$^{-1}$ of the major zooplankton community were greatly different between S1 and S2 (lake stretch) and between S2 and S3 (river stretch). In the lake, growth rates generally were positive, while values of growth rates were negative in the river stretch. Among the environmental variables considered, partial retention time (PRT, d$^{-1}$) seemed to play the most important role in determining characteristics of the zooplankton community structure in the middle part of River Spree.

  • PDF

The Differences of Zooplankton Dynamics in River Ecosystems with and without Estuary Dam in River Mouth (하구언 댐 유무에 따른 강 생태계에서의 동물플랑크톤 동태의 차이)

  • Kim, Hyun-Woo;Lee, Hak-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.273-284
    • /
    • 2007
  • The spatial and temporal zooplankton dynamics were examined along ca. 100-km section of the middle to lower Seomjin River (without estuary dam in river mouth) and Youngsan River (with estuary dam in river mouth) systems during study periods (2004. Nov.${\sim}$2006. Aug.) based on a monthly sampling intervals. The spatial variation of zooplankton biomass at both river ecosystems was distinct. There was considerable longitudinal variation in total zooplankton abundance in Youngsan R. stretch. The increase in total zooplankton abundance were observed along the longitudinal stretch toward the estuary dam. In contrast, there were not statistically significant longitudinal differences in total zooplankton abundance in Seomjin R. stretch. In Youngsan R. stretch, average abundance of total zooplankton (average ranges: $199{\sim}817$ Ind. $L^{-1}$ at 3 sampling sites, n=20) were nearly $4{\sim}60$ fold higher than that of Seomjin R. stretch (average ranges: $12{\sim}43$ Ind. $L^{-1}$ at 4 sampling sites, n=20). Relative abundance of rotifers (over 80% of total zooplankton abundance) at the whole sampling sites in Youngsan R. stretch were Much higher than that of the Seomjin R. stretch. The most abundant rotifers were Polyarthra spp., Brachionus spp., Colurella spp., and Keratella spp. at the both river ecosystems. In Seomjin R. stretch, copepods carbon biomass sharply increased toward in river mouth (over 40% of total zooplankton carbon biomass). Average ranges of total zooplankton filtering rates for phytoplankton at both river ecosystems varied from 21.2 to 92.9 mL $L^{-1}\;D^{-1}$ in Youngsan R. stretch and from 2.1 to 2.6 mL $L^{-1}\;D^{-1}$ in Seomjin R. stretch. Considering the zooplankton filtering rates, zooplankton as grazers of phytoplankton in Youngsan R. stretch seemed to play the more important role in planktonic food web than that of the Seomjin R. stretch.