• Title/Summary/Keyword: rotational velocity

Search Result 426, Processing Time 0.023 seconds

Sliding Mode Control of Rotational Inverted Pendulums Using Output Feedback Compensator (출력 피드백을 이용한 회전형 역진자의 슬라이딩 모드 제어)

  • Ha, Jong-Heon;Choi, Joeng-Ju;Kim, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.469-474
    • /
    • 2000
  • A sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback and reduced observer is presented for rotational inverted pendulums. This control strategy overcomes the problem of unattainable velocity state which is resulted from severe noise of analogue sense and constructs numerical algorithms designs of dynamic output feedback sliding mode hyperplane and controller. The result of the experiment shows the superior performance compared with the LQ controller and the robustness with respect to both tapping disturbances and certain initial conditions.

  • PDF

A Study on the Slippage between a Moving Web and a Roller (이송중인 웹과 롤러의 슬립에 관한 연구)

  • Kwon, Soon-Oh;Shin, Kee-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1542-1547
    • /
    • 2003
  • Air entrainment can become a significant problem in a web handling process. The development of air film between a web and an idle roller can cause a reduction of traction and traction coefficient, by which a slip is occurrred. Computational and experimental study was carried out to describe the slippage of an idle roller for given operating conditions, tension and web velocity. An extended mathematical model to find out a slip condition was developed by using the models of air film height, dynamic traction coefficient, and torque balance of a rotational roller. And by using the extended model, a mechanism to define the slippage between the roller and the moving web was suggested. The results of simulation and experiment showed that the extended dynamic model could properly characterize the rotational motion of the idle roller by considering dynamic traction coefficient. By examining the rotational motion of the idle roller with web dynamics(speed), the mechanism to define al slip condition between the roller and the web was found to be effective.

  • PDF

Parameterizing the Perturbed Rotational Velocities of Planet-induced Gaps

  • Yun, Han Gyeol;Kim, Woong-Tae;Bae, Jaehan;Han, Cheongho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.63.2-63.2
    • /
    • 2019
  • Recent submillimeter observations of ALMA reveal that many protoplanetary disks contain substructures like gaps or rings. The disk-planet interaction is believed to be the most likely gap formation scenario, and most previous numerical work attempted to constrain the planet mass using the density profiles of gas in the gaps. Since the dust and gas distributions likely differ from each other in protoplanetary disks, however, perturbed rotational velocities that directly probe the gas would give a more reliable estimate to the planet mass. In this work, we run two-dimensional hydrodynamic simulations to measure the amplitudes and widths of rotational velocity perturbations induced by planets with different mass. We present the parametric relations of the gap widths and depths as functions of the planet mass and disk properties. We also apply our relations to HD 163296 to infer the masses of embedded planets.

  • PDF

A Kinematic analysis of Golf Swing Motion (골프 스윙동작의 운동학적 분석)

  • Shin, Sung-Hyu;Ko, Seok-Kon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.101-114
    • /
    • 2003
  • The purpose of this study was to examine the major kinematicak variance to Increase the club head velocity during the driver swing two PGA prp-golfers utilizing 3-dimensional Image analyzing linear velocity of the club-head during the impact quantiatively. To achive these purpose, two high speed camera in 120 field/s and one high-speed camera in 500 field/s were used in this study. The program made by Younghoo Kwon(1944) was used to analysis the digitalization of reference point, digitalization of joint venter, synchronization, calculation of 3-Dimensional coordinate by DLT method, and smoothing. Through this study, the conclusions are as follow. 1. During the drivel swing, in the percentile of the total time, two pro-golfer showed 0.925, 0.929 second from adress to top-swing, 0.236, 0.929 second from top-swing to impact. 2. During the driver swing, in the displacement of the center of the body, two pro-golfer showed 45.3, 45.23% from adress, 44.3, 44.24% front impact. 3. In the velocity variance, The maximum club-head velocity two pro-golfer showed 43.36, 43.24m/s respectively the down swing. The ball velocity showed 63.12, 63.06m/s. 4. In the rotational angle of the shoulder joint. two pro-golfer showed $-13.5,-13.53^{\circ}$, during the back swing respectively. Two subject adressed opening status og upper body. 5. In the rotational angle of the right knee angle showed $156.3,154.7^{\circ}$ from the adress.

A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet (원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 김한봉;진인태
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

Improvement of Visual Path Following through Velocity Variation (속도 가변을 통한 영상교시 기반 주행 알고리듬 성능 향상)

  • Choi, I-Sak;Ha, Jong-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.375-381
    • /
    • 2011
  • This paper deals with the improvement of visual path following through velocity variation according to the coordinate of feature points. Visual path follow first teaches driving path by selecting milestone images then follows the route by comparing the milestone image and current image. We follow the visual path following algorithm of Chen and Birchfield [8]. In [8], they use fixed translational and rotational velocity. We propose an algorithm that uses different translational velocity according to the driving condition. Translational velocity is adjusted according to the variation of the coordinate of feature points on image. Experimental results including diverse indoor cases show the feasibility of the proposed algorithm.

Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend (회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Design of an Initial-position Update Mooring Alignment Algorithm for Dual-axis Rotational INS Using a Kalman Filter (칼만 필터를 이용한 2축 회전형 관성항법장치의 초기위치 보정 정박 중 정렬 알고리즘 설계)

  • Kyung-don Ryu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2024
  • INS(inertial navigation system) aligns itself using gravity and Earth's rotational rate from accelerometers and gyro sensors when stationary. Typically, ZUPT(zero velocity update), which is based on a linear error model Kalman filter, is used when it is stationary. However, such algorithms assume stationary conditions, leading to increased alignment errors or filter divergence during maritime mooring due to wave-induced motion. This paper designs a mooring alignment algorithm for maritime platforms using a Kalman filter, which uses large heading angle error model and an initial position correction technique. And it is validated by simulation. Furthermore, it is confirmed that applying this to a rotational INS dramatically improves performance through the principle of bias cancellation.

Study on Shape Design of Cylindrical Cam with A Translating Roller Follower (병진운동용 원형 종동절을 가진 원통캠의 형상설계에 관한 연구)

  • Yoon, Ho-Eop;Shin, Joong-Ho;Gu, Byong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1324-1330
    • /
    • 2003
  • A cylindrical cam with a translating roller follower provides to change the rotational motion of the cam to the translation motion of the follower. It's a very useful mechanism in the automation. But, it's very difficult that the shape is defined accurately. This paper proposes a shape design method of the cylindrical cam with a translation roller follower using the relative velocity method$\^$(9,11-13)/ : The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematical constraints. Finally, we present examples in order to prove the accuracy of the proposed methods.