• Title/Summary/Keyword: rotational velocity

Search Result 426, Processing Time 0.03 seconds

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong Kee;Koo, Hyun Chul;Cha, Bong Jun;Yang, Soo Seok;Lee, Dae Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.

  • PDF

A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy (과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰)

  • Park, Jeong-Wook;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Vibration Suppression Control for a Geared Mechanical System;Simulation Study on Vibration Suppression Effects Using a Model-Based Control with a Rotational Speed Sensor

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.694-699
    • /
    • 2005
  • This paper deals with a control technique of eliminating the transient vibration of a geared mechanical system. This technique is based on a model-based control with a rotational speed sensor in order to establish the damping effect at the driven machine part. A rotational speed sensor is installed in a driven gear, namely a bull gear. A control model is composed of a reduced-order mechanical part expressed as a transfer function between the rotational speed of the motor and that of the bull gear. This control model estimates a load speed after the rotational speed of the bull gear is acted on the transfer function. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a dies driving spindle of a form rolling machine. In this paper, the performance of this control method is examined by simulations. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Development of a High-Resolution Encoder System Using Dual Optical Encoders (이중 광학식 회전 엔코더 구조를 이용한 고정밀도 엔코더 시스템 개발)

  • Lee, Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.76-85
    • /
    • 2007
  • An optical rotary encoder is easy to implement for automatic control applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using the encoder, there are various angular velocity detecting methods, M-, T-, and M/T-method. Each of them has a property of its own. They have common limitation that the angular velocity detection period is strongly subject to the destination velocity magnitude in case of ultimate low range. They have ultimate long detection period or cannot even detect angular velocity at near zero velocity. This paper proposes a dual encoder system with two encoders of normal resolution. The dual encoder system is able to keep detection period moderately at near zero velocity and even detects zero velocity within nominal period. It is useful for detecting velocity in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the dual encoder system validity.

A Study on the Axisymmetric Turbulent Boundaty Layer Over a Rotating Cone Submerged in a Free Stream (자유유동중에 놓인 회전하는 원추체 의 난류경계층 유동 에 관한 연구)

  • 박승호;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.278-285
    • /
    • 1983
  • The momentum transfer in axisymmetric turbulent boundary layer over a rotating cone submerged in a free stream was studied by experiments and numerical analysis. In numerical analysis the velocity profiles were calculated by finite difference method using Prandtl mixing length concept, and the results were compared with experimental results. The agreement was good. By the numerical analysis the wall fircition coefficient was increased as the Reynolds number increased when the rotational speed is large, but the wall friction coefficient was decreased as the rotational speed increased.

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Geostrophic Flows in a Container with a Vertical Plate (수직격판이 있는 용기 내의 지균류)

  • Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.124-131
    • /
    • 1999
  • In this paper, we show the numerical and experimental results of two-dimensional fluid motions inside a rectangular container with a vertical plate subjected to a background rotation added by a rotational oscillation. In the PIV experiment we apply a new algorithm, NTSS, to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it showed good agreement with the experimental results at low ${\epsilon}$ number.

  • PDF

A Experimental study on natural frequency measurement of passenger car tire under the load and rotation (하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구)

  • 김병삼;홍동표;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF