• Title/Summary/Keyword: rotational velocity

Search Result 426, Processing Time 0.021 seconds

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

The Effect of Using Standing Step Condition on Biomechanical Variables during Jab in Boxing (복싱 잽(jab) 동작 시 제자리 스텝의 사용이 운동역학적 변인에 미치는 영향)

  • Lee, Seong-Yeol;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.232-240
    • /
    • 2020
  • The purpose of this study was to analyze the effect of using standing step condition on biomechanical variables during jab in boxing. For this purpose, eight orthodox type college boxers(age = 20.38±0.52 yrs, height = 172.38±5.80 cm, body mass = 63.45±8.56 kg, career = 6.00±1.07 yrs) who without injury to the musculoskeletal system participated in the experiment over the last year. In order to verify the effect of biomechanical variables using standing step during jab in boxing, the paired t-test (α = .05) statistical method was used. First, W.S(with-step) showed a greater impact force than N.S(non-step), and muscle activity was analyzed to be low. Second, it was analyzed that the pelvis and foot segments move faster because W.S affects the velocity of the anterior segment of the human body. Third, the rotational movement of the pelvis was faster in W.S. Fourth, W.S was analyzed to have greater ground reaction force in the anterior caused by the right and left foot than N.S. Through this, it was found that the use of the standing step during jab increases the ground reaction force the velocity and rotational movement of the human segment. Therefore, it was confirmed that it allowed a faster and more agile movement, and thus produces a greater impact force with relatively less muscle activity. Therefore, in order to effectively deliver a greater impact force to the opponent during the jab, it was effectively analyzed to accompany the standing step.

Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion (인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • Tidal farm is a multi-arrayed turbine system for utilizing tidal stream energy. For horizontal-axis turbine(HAT) system, it is recommended that each unit has to be deployed far apart in order to avoid hydrodynamic interference among turbines, as proposed by the European Marine Energy Centre(EMEC). But there is no rule for the arrangement of vertical-axis turbine(VAT) yet. Moreover it has been reported that a proper arrangement of adjacent turbines can enhance the overall efficiency even greater than an arrangement without mutual interference effect. This paper suggests the layout of VATs showing the better performances, which turned out to be quite different from HATs' arrangement. Numerical calculations were performed to investigate the performance variation in terms of the rotational direction as well as the distance between turbines. It has been shown that the best combination of rotational direction and distance between turbines can increase its performance higher about 9.2% than that of two independently operated turbines. It is likely that such improvement is due to the increased velocity between adjacent turbines. For diagonally arranged turbines, the maximum normalized mean power coefficient was obtained to be higher about 5.6% than that of two independent turbines. It is expected that the present results can be utilized for conceptual design of tidal farm to harness the tidal stream energy.

Investigation on the Turbulent Flow Characteristics of a Gun-Type Gas Burner with the Different Shape of Baffle Plate (배플판 형상이 다른 Gun식 가스버너의 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2004
  • This paper was studied to investigate and compare the effects of inclined baffle plate on the turbulent flow characteristics of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. For this purpose, two burner models with a cone-type baffle plate and a flat-type one respectively were used. The fast jet flow spurted from slits plays a role such as an air-curtain because it encircles rotational flow by swirl vanes and drives mixed main flow to axial direction regardless of the inclination of baffle plate. The inclined baffle plate causes axial mean velocity component and turbulent intensities etc. to be greatly concentrated towards the central part of a burner, and its effect especially appears in the range of about X/R=1.0-2.0. Also, it gives much larger size to axial mean velocity component and turbulent intensities etc formed near the slits in the range of X/R=1.4103. Especially the inclined baffle plate shifts more the Reynolds shear stress uw to the central region of a burner(Y/R=${\pm}$0.75) than the flat-type one, moreover it develops more strongly than uv.

CO OBSERVATIONS AND STABILITY ANALYSIS OF B133 AND B134

  • Hong, S.S.;Kim, H.G.;Park, S.H.;Park, Y.S.;Imaoka, K.
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.71-94
    • /
    • 1991
  • With the 14 m radio telescope at DRAO and the 4 m at Nagoya University, we have made detailed maps of $^{12}CO$ and $^{13}CO$ emissions from two Barnard objects B133 and B134 in the $J=1{\rightarrow}O$ rotational transition lines. Usual LTE analyses of the CO observations led us to determine the distribution of column densities over an entire area encompassing both globules. Total gas masses estimated from the column density map are $90\;M_{\odot}$ and $20\;M_{\odot}$ for B133 and B134, respectively. The radial velocity of B133 is red shifted with respect to B134 by $0.8\;km\;s^{-1}$, which is too lagre to bind the two clouds as a binary system. We have shown that the usual stability analysis based on the simplified version of virial theorem with the second time-derivative of the moment of inertia term $\ddot{I}$ being ignored could mislead us in determining whether a given cloud eventually collapses or not. The lull version of the scalar virial theorem with the $\ddot{I}$ term is shown to be useful in following up the time-dependent variations of the cloud size R and its streaming velocity $\dot{R}$ as functions of time. Results of our stability analysis suggest that B133 will eventually collapse in $(2{\sim}4){\times}10^6$ years.

  • PDF

The Analysis of Kinematic Difference in Glide and Delivery Phase for the High School Male Shot Putter's Records classified by Year (남자 고등부 포환던지기 선수들의 연도 별 기록에 따른 글라이드와 딜리버리 국면의 운동학적 차이)

  • Park, Jae-Myoung;Chang, Jae-Kwan;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.295-306
    • /
    • 2013
  • The purpose of this study was to provide high school male shot putters training methods of gliding and delivery motion through comparative analysis of kinematic characteristics. To accomplish this purpose, three dimensional motion analysis was performed for the subjects(PKC, KKH, YDL) who participated in high school male shot putter competition on 92nd (2011), 93rd (2013) National Sports Festival. The subjects were filmed by four Sony HXR-MC2000 video cameras with 60 fields/s. The three-dimensional kinematic data of the glide, conversion and delivery phase were obtained by Kwon3d 3.1 version. The data of the shoulder rotational angles and projection angles were calculated with Matlab R2009a. The following conclusions had been made. With the analysis of the gliding and stance length ratio, the gliding length was shorter at the TG than the SG with short-long technique but the gliding and stance length ratio was 46.8:53.2% respectively. The deviation of the shots trajectory from APSS(Athlete-plus-shot-system) revealed that the PKC showed similar to "n-a-b-c-I" of skilled S-shape type, KKH and YDL showed "n-a-d-f-I'" of unskilled type. Furthermore, they showed smaller radial distance from the central axis of the APSS and the shots were away from the linear trajectory. From this characteristics, The PKC who performed more TG than SG had shorter glide with S-shape of APSS(skilled type) showed the better record than others with technical skill. But KKH and YDL had bigger glide ratio with "n-a-d-f-I'" of unskilled type and improved their records with technical factor. The projection factor had an effect on the record directly. Because PKC maintained more lower glide and transition posture with momentum transfer through COG's rapid horizontal velocity respectively the subject possessed the characteristics of high horizontal and vertical velocity with large turning radius from shot putter to APSS.

Risk free zone study for cylindrical objects dropped into the water

  • Xiang, Gong;Birk, Lothar;Li, Linxiong;Yu, Xiaochuan;Luo, Yong
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-400
    • /
    • 2016
  • Dropped objects are among the top ten causes of fatalities and serious injuries in the oil and gas industry (DORIS, 2016). Objects may accidentally fall down from platforms or vessels during lifting or any other offshore operation. Proper planning of lifting operations requires the knowledge of the risk-free zone on the sea bed to protect underwater structures and equipment. To this end a three-dimensional (3D) theory of dynamic motion of dropped cylindrical object is expanded to also consider ocean currents. The expanded theory is integrated into the authors' Dropped Objects Simulator (DROBS). DROBS is utilized to simulate the trajectories of dropped cylinders falling through uniform currents originating from different directions (incoming angle at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$). It is found that trajectories and landing points of dropped cylinders are greatly influenced by the direction of current. The initial conditions after the cylinders have fallen into the water are treated as random variables. It is assumed that the corresponding parameters orientation angle, translational velocity, and rotational velocity follow normal distributions. The paper presents results of DROBS simulations for the case of a dropped cylinder with initial drop angle at $60^{\circ}$ through air-water columns without current. Then the Monte Carlo simulations are used for predicting the landing point distributions of dropped cylinders with varying drop angles under current. The resulting landing point distribution plots may be used to identify risk free zones for offshore lifting operations.

A Study on Translational Motion Control in Integrated Control System for Ship Steering Motion (선박 조종운동을 위한 통합제어시스템에서의 이동운동제어에 관한 연구)

  • Woo, Ju-Eun;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2015
  • In general, a series of ship steering motion is represented by the combination of translational motion and rotational motion of the ship. Especially, special-functioned ships such as large-scale cruises, ships for installing underwater optical cable, and diver ships must be able to reveal only a translational motion without the change of orientation. In this paper, a method to comprise an integrated control system based on the joystick as a command instrument for translational motion control is suggested. In order to realize the translational motion control system, several algorithms are suggested including the velocity command generation, the selection of motional variables, and the generation and tracking of reference inputs for the selected motional variables. A simulation bench is composed to execute simulations for several translational motion commands. At last, the effectiveness of the proposed method is verified by analyzing the simulation results.

A Study for Vision-based Estimation Algorithm of Moving Target Using Aiming Unit of Unguided Rocket (무유도 로켓의 조준 장치를 이용한 영상 기반 이동 표적 정보 추정 기법 연구)

  • Song, Jin-Mo;Lee, Sang-Hoon;Do, Joo-Cheol;Park, Tai-Sun;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.315-327
    • /
    • 2017
  • In this paper, we present a method for estimating of position and velocity of a moving target by using the range and the bearing measurements from multiple sensors of aiming unit. In many cases, conventional low cost gyro sensor and a portable laser range finder(LRF) degrade the accuracy of estimation. To enhance these problems, we propose two methods. The first is background image tracking and the other is principal component analysis (PCA). The background tracking is used to assist the low cost gyro censor. And the PCA is used to cope with the problems of a portable LRF. In this paper, we prove that our method is robust with respect to low-frequency, biased and noisy inputs. We also present a comparison between our method and the extended Kalman filter(EKF).