• Title/Summary/Keyword: rotational velocity

Search Result 426, Processing Time 0.024 seconds

Heavy-Weight Component First Placement Algorithm for Minimizing Assembly Time of Printed Circuit Board Component Placement Machine

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2016
  • This paper deals with the PCB assembly time minimization problem that the PAP (pick-and-placement) machine pickup the K-weighted group of N-components, loading, and place into the PCB placement location. This problem considers the rotational turret velocity according to component weight group and moving velocity of distance in two component placement locations in PCB. This paper suggest heavy-weight component group first pick-and-place strategy that the feeder sequence fit to the placement location Hamiltonean cycle sequence. This algorithm applies the quadratic assignment problem (QAP) that considers feeder sequence and location sequence, and the linear assignment problem (LAP) that considers only feeder sequence. The proposed algorithm shorten the assembly time than iATMA for QAP, and same result as iATMA that shorten the assembly time than ATMA.

Change in Rotational Motion of the Shoulder and Hip According to the Method Used for a 2-Handed Backhand Stroke in Tennis (테니스 양손 백핸드 스트로크 방법에 따른 어깨와 힙의 회전운동 변화)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • The purpose of this study was to examine differences between players who bend the left elbow and those who stretch it during the forward swing from BST to BC in a 2-handed backhand stroke among outstanding high school tennis players, and to assess the detailed 3D rotational kinematic characteristics of the shoulder and the hip. Statistically significant differences were observed between groups in the longitudinal axis rotation angle of the shoulder and the angle between the shoulder and the arm at BST, and in the side to side movement of the shoulder, the up and down movement of the hip, the side tilt angular velocity of the shoulder, the side tilt angular velocity of the hip, and the front tilt angular velocity of the hip at BC. The difference in the longitudinal axis rotation angle of the shoulder between the 2 groups suggests a difference in the flexibility of the joint in the shoulder arm racquet system. The longitudinal axis rotation angular velocity of the shoulder reached its peak at 75 % of the duration of the analyzed segment and then decreased little by little until BC. This time is considered the stage for increasing the angular velocity of the upper arm, the forearm, the hand and then the racquet, which are more distal segments than the shoulder.

Immediate Effects of Lumbar Rotational Mobilization on the One-Legged Standing Ability in Healthy Individuals: A Randomized Controlled Trial

  • Heo, Seo Yoon;Kim, Bo Kyung;Moon, Ok Kon;Choi, Wan Suk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.3
    • /
    • pp.1521-1527
    • /
    • 2018
  • The original focus of this study was to investigate the immediate effects of lumbar rotational mobilization on the one-legged standing ability. Fifteen subjects (6 men and 9 women, mean age = 22.77 (SD = 1.21), mean height = 165.46cm (SD = 11.65), mean weight = 61.46kg (SD = 8.29) volunteers from healthy individuals were recruited and randomized to a lumbar rotational mobilization (LRM) group and a trunk rotational exercise (TRE) group. Mobilization (grade 3 or 4) was applied to the LRM group on the lumbar spine (L1 to L5) in a side-lying, and trunk twist exercise (left and right side) was applied the to the TRE group with lunge position. Center of pressure (COP) and the velocity of the center of pressure (VCOP) of each participant were measured as a balance ability through one leg standing position. Results are as follows. In within-group difference, the COP of the LRM group reduced during standing with the right foot, but the VCOP change of the LRM was not statistically significant. In between-groups difference, COP of TRE group was decreased compared with LRM group only during left leg standing in the eyes (p <.05). The results of this study suggest that LRM is more effective than TRE in improving balance ability.

A Development of SFD for the measurement of rotational velocity vector (회전 속도 Vector 계측을 위한 공간필터 검출기의 개발)

  • Go, Hyun-Min;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.621-624
    • /
    • 1999
  • In this paper, we propose the non-contact method to measure rotational speed vector using spatial filtering method. The rotational speed $\omega$ is known by the frequency of output sinusoidal signal direct proportional to that and the rotational direction is given by the phase delay from the weighting function design of spatial filter.

  • PDF

Linear Velocity Control of the Mobile Robot with the Vision System at Corridor Navigation (비전 센서를 갖는 이동 로봇의 복도 주행 시 직진 속도 제어)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.896-902
    • /
    • 2007
  • This paper proposes a vision-based kinematic control method for mobile robots with camera-on-board. In the previous literature on the control of mobile robots using camera vision information, the forward velocity is set to be a constant, and only the rotational velocity of the robot is controlled. More efficient motion, however, is needed by controlling the forward velocity, depending on the position in the corridor. Thus, both forward and rotational velocities are controlled in the proposed method such that the mobile robots can move faster when the comer of the corridor is far away, and it slows down as it approaches the dead end of the corridor. In this way, the smooth turning motion along the corridor is possible. To this end, visual information using the camera is used to obtain the perspective lines and the distance from the current robot position to the dead end. Then, the vanishing point and the pseudo desired position are obtained, and the forward and rotational velocities are controlled by the LOS(Line Of Sight) guidance law. Both numerical and experimental results are included to demonstrate the validity of the proposed method.

Analysis of Eccentricity Ratio in the Rolling Piston Type Rotary Compressor Using Mobility Method (모빌리티법을 이용한 롤링피스톤형 회전식 압축기의 축심궤적 해석)

  • 강태식;최동훈;이세정
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2001
  • This paper presents an analysis of eccentricity ratio of rolling piston using mobility method which is a powerful tool for analyzing dynamically-loaded journal bearings with efficiency and applicability. And, we investigate influences of design parameters (discharge pressure, radial clearance, rotational velocity of shaft, and eccentricity of compressor) on bearing load and eccentricity ratio. The results show that the discharge pressure, radial clearance and rotational velocity of shaft have significant influence on eccentricity ratio, and the discharge pressure and eccentricity of compressor have influence on bearing load.

Implementation of Robust Direct Seek Control System for High-Speed Rotational Optical Disk Drives (고배속 광 디스크 드라이브를 위한 강인 직접 검색 제어 시스템의 구현)

  • Jin, Gyeong-Bok;Lee, Mun-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.539-546
    • /
    • 2002
  • This paper presents a new direct seek control scheme that provides fast data access capability and robust performance for high-speed rotational optical disk drives (ODD). When a disk is rotating at a high speed to obtain fast data transfer in ODD, the magnitude and frequency of velocity disturbance caused by eccentric rotation of the disk increase in proportion to the rotational speed of the disk. Such disturbances make it almost impossible for the conventional seek control scheme to achieve stable and satisfactory seek performance. We analyze the problems that may arise when the conventional seek control scheme is applied to the high-speed rotational ODD and propose a new direct seek control scheme that will solve such problems. In the proposed scheme, a seek control system is designed such that its performance is guaranteed for a set of plants with parameter perturbations. The performance of the proposed seek control scheme is shown by experiments using a high-speed rotational ODD.

A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism (스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Lane-Curvature Method : A New Method for Local Obstacle Avoidance (차선-곡률 방법 : 새로운 지역 장애물 회피 방법)

  • Ko, Nak-Yong;Lee, Sang-Kee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.313-320
    • /
    • 1999
  • The Lane-Curvature Method(LCM) presented in this paper is a new local obstacle avoidance method for indoor mobile robots. The method combines Curvature-Velocith Method(CVM) with a new directional method called the Lane Method. The Lane Method divides the environment into lanes taking the information on obstacles and desired heading of the robot into account ; then it chooses the best lane to follow to optimize travel along a desired heading. A local heading is then calculated for entering and following the best lane, and CVM uses this heading to determine the optimal translational and rotational velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the dynamics of the robot Xavier, show the efficiency of the proposed method.

  • PDF