• Title/Summary/Keyword: rotational ductility

Search Result 46, Processing Time 0.02 seconds

Inelastic behavior of RC shear wall and steel girder shear connection on reinforcement details (보강상세에 따른 RC 전단벽과 강재 보 전단접합부의 비탄성 거동)

  • Song, Han-Beom;Lee, Jung-Han;Yang, Won-Jik;Kang, Dae-Eon;Lee, Kyung-Hwun;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.138-141
    • /
    • 2006
  • Shear wall-frame system is one of the most, if not the most, popular system for resisting lateral loads. The core is the primary lateral load-resisting systems, the perimeter frame is designed for gravity loads, and the connection between perimeter frame and core is generally a shear connection. Specially, single plate shear connection have gained considerable popularity in recent years due to their ease of fabrication and erection. Single plate shear connection should be designed to satisfy the dual criteria of shear strength and rotational ductility. An experimental program was undertaken to evaluate seismic behavior of single plate shear connection. The main test variable is the reinforcing detail of connection. Through the experimental program, the cyclic behavior of typical and reinforcing single plate shear connection was established.

  • PDF

Evaluation of Nonlinear Dynamic Behavior for Steel Moment Frame Structures Considering P-$\Delta$ Effects (P-$\Delta$ 효과를 고려한 철골 구조물의 비선형 동적거동 평가)

  • 최원호;이주완;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.235-242
    • /
    • 2001
  • Inelastic seismic response of steel moment frame structures, which are usually quite gravity load and subject to large displacement under severe earthquake, may be severly influenced by the structure P-Δ effects. The P-Δ effect may have an important impact on the dynamic behavior of the structure in the nonlinear seismic analysis. In multi degree of freedom systems P-Δ effects may significantly affect only a subset of stories or a single story alone. Therefore, a story drift amplification of structure is happened by P-Δeffects and such nonlinear dynamic behaviors are very difficult to evaluate in the structures. In this study, two systems having different design methods of steel moment frame structures are investigated to evaluate the P-Δ effects due to gravity load. The plastic hinge formations, maximum rotational ductility demands, and energy distribution will be compared and evaluated following whether the P-Δ effects are considered or not. And design methods are proposed for the prevention of the instability of structures which due to the P-Δ effects.

  • PDF

The structural detailing effect on seismic behavior of steel moment resisting connections

  • Farrokhi, Hooman;Danesh, F. Ahmadi;Eshghi, Sassan
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.617-630
    • /
    • 2010
  • Different types of moment resisting connections are commonly used to transfer the induced seismic moments between frame elements in an earthquake resisting structure. The local connection behavior may drastically affect the global seismic response of the structure. In this study, the finite element and experimental seismic investigations are implemented on two frequently used connection type to evaluate the local behavior and to reveal the failure modes. An alternative connection type is then proposed to eliminate the unfavorable brittle fracture modes resulted from probable poor welding quality. This will develop a reliable predefined ductile plastic mechanism forming away from the critical locations. Employing this technique, the structural reliability of the moment resisting connections shall be improved by achieving a controllable energy dissipation source in form of yielding of the cover plates.

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

Investigation on the monotonic behavior of the steel rack upright-beam column connection

  • Cao, Yan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alaskar, Abdulaziz;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.103-115
    • /
    • 2020
  • The cold-formed steel storage racks are extensively employed in various industries applications such as storing products in reliable places and storehouses before distribution to the market. Racking systems lose their stability under lateral loads, such as seismic actions due to the slenderness of elements and low ductility. This justifies a need for more investigation on methods to improve their behavior and increase their capacity to survive medium to severe loads. A standardized connection could be obtained through investigation on the moment resistance, value of original rotational stiffness, ductility, and failure mode of the connection. A total of six monotonic tests were carried out to determine the behavior of the connection of straight 2.0 mm, and 2.6 mm thickness connects to 5 lug end connectors. Then, the obtained results are benched mark as the original data. Furthermore, an extreme learning machine (ELM) technique has been employed to verify and predict both moment and rotation results. Out of 4 connections, increase the ultimate moment resistance of connection by 13% and 18% for 2.0 mm and 2.6 mm upright connection, respectively.

An Experiemetal Study for Improvement of Seismic Performance of Steel Beam-to-Column Connections (철골 보-기둥 접합부의 내진성능 개선을 위한 실험적 연구)

  • 이승준;김원기;이정웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.61-70
    • /
    • 1999
  • Cracking was observed in beam-to-column connections of many steel building frames during the 1994 Northridge and 1995 Kobe earthquakes. Thus extensive experimental researches are currently being conducted to improve the seismic performance of steel frames. A value of 0.015 radian was considered as a reasonable estimate of beam plastic rotation demand in steel moment-resisting frames subjected to severe earthquakes. The objective of this research is to develop a type of connection detail which moves the plastic hinge region in the beam away from the face of the column and can prevent cracking at the welded flange of the beam-to-column connection under seismic loading. An experimental investigation was undertaken on five beam-to-column connection specimens to study the performance of the connections with proposed details. The experiemental results showed that the flexural strength and rotational ductility of the beam connections were adequate for the seismic resistance steel frames to prevent possible cracks at the connections.

  • PDF

Performance Evaluation on Blast-resistant of Gastight Door using Numerical Simulation (수치해석을 활용한 가스차단문의 폭발압력저항 성능평가)

  • Shin, Baegeun;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2022
  • As the scale of explosions diversifies along with the expansion of gas handling and storage facilities, studies on explosion-proof facilities in preparation for accidents is being actively conducted. The gastight door blocks the expansion pressure caused by blast waves or internal fires, and at the same time protects the personnel and equipment inside. For gastight doors, the regulations related to explosion-proof design are not clearly presented, and studies on the explosion pressure resistance performance evaluation of the facility are insufficient. In this study, the gastight door was modeled in a 3D shape with reference to the regulation ASTM regarding the gastight door standard. Afterwards, evaluation for blast-resistant performance of gastight door using Numerical simulation was evaluated by using ANSYS Explicit Dynamics to compare the deformation.

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Behaviour of open beam-to-tubular column angle connections under combined loading conditions

  • Liu, Yanzhi;Malaga-Chuquitaype, Christian;Elghazouli, Ahmed Y.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.157-185
    • /
    • 2014
  • This paper examines the behaviour of two types of practical open beam-to-tubular column connection details subjected to combined moment, axial and/or shear loads. Detailed continuum finite element models are developed and validated against available experimental results, and extended to deal with flexural, axial and shear load interactions. A numerical investigation is then carried out on the behaviour of selected connections with different stiffness and strength characteristics under various load combination scenarios. The influence of applied levels of axial tensile or compressive loads on the bending stiffness and capacity is examined and discussed. Additionally, the interaction effects between shear forces and co-existing bending and axial loads are examined and shown to be comparatively insignificant in terms of stiffness and capacity in most cases. It is also shown that the range of connections considered in this paper can provide rotational ductility levels in excess of those required under typical design scenarios. Based on these findings, a simplified component-based representation is proposed and described, and its ability to represent the connection response under combined loading is verified using results from detailed numerical simulations.

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.