• 제목/요약/키워드: rotational angle differences

검색결과 26건 처리시간 0.025초

소실모형주조용 조형장치의 진동특성 평가 (Vibration Characteristics of Compaction Table for Expendable Pattern Casting Process through Changing Vibration Modes)

  • 이강래;최경환;조규섭;이경환;김명호;임경화;김기영
    • 한국주조공학회지
    • /
    • 제24권5호
    • /
    • pp.273-280
    • /
    • 2004
  • Vibrational motions of the compaction table were investigated to select the optimal operation conditions of sand filling and compaction for the EPC process. Their modes were measured at the nine points of the table with changing the relative rotation angles between the two eccentric mass vibrators which were attached parallel beneath the table. Well-defined vibration modes were measured at the center of the table but those of left and right sides of the table were distorted regardless of rotational angle differences. The distortion of vibration modes at both sides of the table were caused by the moment generated by offset positions of two eccentric masses. It was found that the uniform vibration modes would be gathered by controlling the relative distances between the rotating axis and the center of gravity in the compaction system at the various conditions of vibration modes and rotational angle differences.

테니스 양손 백핸드 스트로크 방법에 따른 어깨와 힙의 회전운동 변화 (Change in Rotational Motion of the Shoulder and Hip According to the Method Used for a 2-Handed Backhand Stroke in Tennis)

  • 강상학
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.39-46
    • /
    • 2011
  • The purpose of this study was to examine differences between players who bend the left elbow and those who stretch it during the forward swing from BST to BC in a 2-handed backhand stroke among outstanding high school tennis players, and to assess the detailed 3D rotational kinematic characteristics of the shoulder and the hip. Statistically significant differences were observed between groups in the longitudinal axis rotation angle of the shoulder and the angle between the shoulder and the arm at BST, and in the side to side movement of the shoulder, the up and down movement of the hip, the side tilt angular velocity of the shoulder, the side tilt angular velocity of the hip, and the front tilt angular velocity of the hip at BC. The difference in the longitudinal axis rotation angle of the shoulder between the 2 groups suggests a difference in the flexibility of the joint in the shoulder arm racquet system. The longitudinal axis rotation angular velocity of the shoulder reached its peak at 75 % of the duration of the analyzed segment and then decreased little by little until BC. This time is considered the stage for increasing the angular velocity of the upper arm, the forearm, the hand and then the racquet, which are more distal segments than the shoulder.

치과용 임플란트 시스템의 기계적 가공오차에 관한 연구 (Machining Tolerance of Various Implant Systems and their Components)

  • 김형섭;권긍록;한중석
    • 구강회복응용과학지
    • /
    • 제24권1호
    • /
    • pp.57-65
    • /
    • 2008
  • 연구목적 : 본 연구에서는 rotational freedom을 측정할 수 있는 기구를 개발하여 시중에서 유통되고 있는 국산 임플란트 및 다양한 국적의 임플란트들의 기계적인 가공오차들을 측정하여 다양한 임플란트 시스템의 component간의 기계적인 안정성을 평가하고자 한다. 또한 본 연구에서는 더 나아가 최근에 임플란트 abutment로 각광을 받고 있는 각종 ceramic abutment의 절삭 가공오차에 관한 항목을 측정하여 임플란트 제조사 및 임상의들에게 올바른 정보를 제공하고자 한다. 연구재료 및 방법 : 국내에서 유통되는 외부연결구조의 외국산 임플란트 시스템(Nobel Biocare, Anthorgyr)과 국산 시스템(Neobiotec)과 내부연결구조의 임플란트 시스템(외국산:Nobel Biocare, Anthorgyr, Straumann, Frident Dentsply, 국산:Dentium) 별로 임플란트 fixture, abutment, analog를 서로 교차 연결하여 회전각도측정기(rotational angle measuring device)로 freedom of rotational angle을 측정하였다. 국산 외부연결구조의 지르코니아 abutment(ZirAce)를 외부연결구조의 임플란트 시스템(Neobiotec, Nobel Biocare, Anthorgyr)의 fixture와 analog와 교차연결하여 freedom of rotational angle을 측정하였다. 연구결과 : 국산 외부연결구조의 임플란트 시스템은 약 2.67도(fixture와 abutment 연결시), 내부연결구조의 임플란트는 약 4.3도(fixture와 abutment 연결시)의 rotational freedom을 보였다. 국산 지르코니아 abutment는 외국산 및 국산 외부연결구조 임플란트 시스템과 상관없이 3도 이하(fixture와 연결시)의 결과를 보였다. 결 론 : 시제품으로 제작된 디지털 회전각도측정기는 높은 분해능을 갖고 있었으며, 국산 임플란트의 기계적 가공오차는 외국산 임플란트와 거의 유사했다. 국산 세라믹 abutment의 기계적 가공오차는 fixture 제조회사별로 다르게 나타났지만 같은 회사의 절삭가공된 금속 abutment와 비교시 가공오차가 더 적었다.

스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구 (The Differences in the Ski Carving Turn Motion According to Level of Exper tise)

  • 은선덕;현무성
    • 한국운동역학회지
    • /
    • 제20권3호
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.

대퇴골 회전방지보조기를 착용한 트레드밀 보행훈련이 뇌성마비 아동의 하지배열 및 보행에 미치는 영향: 단일그룹 반복측정 연구 (The Effects of Treadmill Gait Training with Flexible Derotator of Femur Orthosis on Postural Alignment of Lower Extremities and Gait in Children with Cerebral Palsy: Single Group Rpeated Measure Design)

  • 유현영;김선엽;장현정
    • 대한물리의학회지
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2014
  • PURPOSE: The purpose of this study was to investigate the effects of flexible derotator of femur orthosis (FDO) during treadmill gait training on the quadriceps-angle (Q-angle), lateral pelvic tilt, gait speed, and number of steps in children with cerebral palsy. METHODS: Seven children with cerebral palsy who had rotational deformity of the lower extremities participated in this study. We used single group repeated measure design. The procedure consisted of baseline phase, intervention phase, and post-intervention phase. The baseline phase consisted of stretching and strengthening exercise and treadmill gait training without FDO. The treatment phase not only included the same procedures as those for baseline, but also included FDO during treadmill gait training. Postural alignment of the lower extremities was assessed with the Q-angle, and lateral pelvic tilt using the Dartfish software program. A 10-m walk test was used to evaluate gait speed and number of steps. RESULTS: For postural alignment, there was significant differences after the application of FDO (p<.05). For gait ability, there was significant differences in all phases (p<.01). CONCLUSION: These finding suggest that the application of FDO during treadmill gait training had a positive effect on the improvement of postural alignment and gait ability in children with cerebral palsy having rotational deformity.

날개 틸팅형 풍력발전기의 출력과 날개 표면의 압력분포에 대한 3차원 유동 해석 (Power Coefficient and Pressure Distributions on Blade Surfaces of a Wind Turbine with Tiltable Blades by 3D Simulations)

  • 정창도;배현우;성재용
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a new shape of wind turbine with horizontal axis has been proposed. The proposed wind turbine has two pairs of 3 tiltable blades which minimizes air resistance during the reverse rotational direction. Under a given wind speed, 3D numerical simulations on tiltable blades were performed for various TSRs(tip-speed-ratios). Four cases of rotational position was considered to analyze the torque and wind power generated on the blade surfaces. The results show that the maximum wind power occurs at the TSR of 0.2. Due to the blade tilting, the wind passes through the blade without air resistance at the reverse rotational direction. The torque is mainly caused by pressure differences between the front and rear surface of the blade, and it becomes maximum when the blade is located at the azimuth angle of 330°.

Grooved abutment가 임플란트 지대주 연결나사의 안정성에 미치는 영향 (Effects of grooved abutment on stability of implant abutment screw)

  • 심일광;양승원;심준성;김지환
    • 대한치과보철학회지
    • /
    • 제54권4호
    • /
    • pp.387-392
    • /
    • 2016
  • 목적: 본 연구의 목적은 grooved abutment가 지대주 나사풀림 현상에 미치는 영향을 확인하는 것이다. 재료 및 방법: 2015년 3월부터 7월까지 연세대학교 치과대학병원 보철과에 내원한 50명, 51개 임플란트에 대해서 임플란트 보철 장착 후 6개월 점검 시 지대주 연결나사의 안정성을 평가하였다. 대조군은 groove가 없는 지대주를 사용한 30개 임플란트이었고, 실험군은 groove가 있는 지대주를 사용한 21개 임플란트이었으며, Astra, Straumann, Implantium, Osstem 시스템이 사용되었다. 6개월 점검 시에 지대주 연결나사의 풀림여부를 조사하였고, 동일한 힘으로 재체결 시 지대주 연결나사의 추가 회전각을 측정하였으며, 보철물 협측하방 부위에서 PTV를 측정하였다. SPSS 프로그램을 이용하여 정규성 분석 후 Mann-Whitney 분석을 시행하였다. 결과: 51개 임플란트에 대해 보철 장착 후 6개월 점검을 시행한 바, 나사 풀림이나 보철물 파절 등의 특이할 만한 합병증은 나타나지 않았다. 6개월 후 지대주 연결나사의 추가회전각은, 실험군 평균은 $4.75^{\circ}$이었고 대조군 평균은 $7.35^{\circ}$이었으며, 통계적으로 유의한 차이는 없었다 (P = .576). PTV에서도 유의한 차이는 없었다 (P = .767). 결론: 지대주의 groove 여부가 지대주 연결나사의 안정성에 미치는 영향은 유의한 차이가 없으나, 이에 대해 좀더 장기적이고 다수의 증례를 이용한 추가적인 연구가 필요해 보인다.

Effects of Backward Walking Training with a Weighted Bag Carried on the Front on Craniocervical Alignment and Gait Parameters in Young Adults with Forward Head Posture: A case series

  • Byoung-Ha Hwang;Han-Kyu Park
    • 대한통합의학회지
    • /
    • 제12권3호
    • /
    • pp.83-91
    • /
    • 2024
  • Purpose : This case study aimed to investigate the effects of backward walking exercises with a front-loaded bag on craniovertebral angle (CVA), craniorotational angle (CRA), and gait variables in subjects with forward head posture (FHP). Methods : Two individuals in their twenties with FHP performed backward walking exercises on a treadmill while carrying a front-loaded bag with a load equivalent to 20 % of their body weight, for 30 minutes per day, three times a week, over two weeks. CVA and CRA were measured before and after the intervention using side view photographs taken from 1.5 meters away. CVA was calculated by marking C7, the tragus of the ear, and the outer canthus of the eye, and CRA was determined using the same landmarks. Image J software was used for angle analysis, with measurements taken three times and averaged. Gait variables such as step length and cadence were recorded using a step analysis treadmill and analyzed with the software included with the equipment, with measurements taken at baseline and after the two-week intervention. Results : Both participants demonstrated notable improvements in the CVA, indicating enhanced head alignment relative to the cervical spine. There was also a marked decrease in the CRA, suggesting a reduction in rotational misalignment. Although differences were observed in gait variables, such as step length and cadence, these changes were not consistent across measurements. The results suggest that backward walking exercises with a load carried in front can positively influence postural adjustments by aligning the cervical spine in individuals with FHP. Conclusion : The findings of this case study indicate that backward walking exercises with a front-loaded bag can effectively improve cervical spine alignment in individuals with FHP. Differences were observed in gait variables, such as step length and cadence, but these changes were not consistent across measurements. Future studies should explore these effects more comprehensively and consider optimizing the exercise protocol for better therapeutic outcomes.

오프라인 프로그래밍에서 스카라 로봇의 보정 (SCARA robot calibration on off-line programming)

  • 정성우;손권;이민철;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF

Cone-beam computed tomography based evaluation of rotational patterns of dentofacial structures in skeletal Class III deformity with mandibular asymmetry

  • Ryu, Hyeong-Seok;An, Ki-Yong;Kang, Kyung-Hwa
    • 대한치과교정학회지
    • /
    • 제45권4호
    • /
    • pp.153-163
    • /
    • 2015
  • Objective: The purpose of this study was to assess rotational patterns of dentofacial structures according to different vertical skeletal patterns by cone-beam computed tomography (CBCT) and analyze their influence on menton deviation in skeletal Class III deformity with mandibular asymmetry. Methods: The control group consisted of 30 young adults (15 men, 15 women) without any severe skeletal deformity. The asymmetry group included 55 adults (28 men, 27 women) with skeletal Class III deformity and at least 3-mm menton deviation from the midsagittal plane; it was divided into the hyperdivergent and hypodivergent subgroups using a mandibular plane angle cutoff of $35^{\circ}$. Fourteen rotational variables of the dental arches and mandible were measured and compared among the groups. Correlations between menton deviation and the other variables were evaluated. Results: The asymmetry group showed significantly larger measurements of roll and yaw in the mandible than the control group. The hypodivergent subgroup showed significant differences in maxillary posterior measurements of yaw (p < 0.01) and maxillary anterior shift (p < 0.05) compared with the hyperdivergent subgroup. All the mandibular measurements had significant correlations with menton deviation (p < 0.01). Most measurements of roll were positively correlated with one another (p < 0.01). Measurements of yaw and roll in the posterior regions were also positively correlated (p < 0.05). Conclusions: Menton deviation in skeletal Class III deformity with mandibular asymmetry is influenced by rotation of mandibular posterior dentofacial structures. The rotational patterns vary slightly according to the vertical skeletal pattern.