• 제목/요약/키워드: rotation symmetric

검색결과 87건 처리시간 0.022초

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

음차자이로의 동적특성 연구 (Dynamic Analysis of Toning-fork Gyroscope)

  • 곽문규;송명호
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.92-98
    • /
    • 2003
  • A rate gyroscope has been used popularly to measure the angular motion of a given vehicle using a symmetric rotor spinning rapidly about its symmetry axis. Since the rapid rotation is required in this type of gyroscope, the motor has been used to make the rotor spin, so that it results in a heavy configuration. The toning-fork gyroscope has been developed to avoid this problem, which utilizes a Coriolis coupling term and vibration about one axis. Due to the Coriolis effect, the vibration of one axis is transferred to other axis when the angular motion along the vibrating axis is given to the system. The concept of a tuning-fork gyroscope was recently realized using MEMS techniques. However, the dynamic characteristics of the tuning-fork gyroscope has not been discussed in detail. In this study. we derived the equations of motion for the tuning-fork type gyroscope using the energy approach and investigated the dynamic characteristics by means of numerical analysis.

음차자이로의 동적특성 연구 (Dynamic Analysis of Tuning-Fork Gyroscope)

  • 곽문규;한상보
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.247-252
    • /
    • 2002
  • A rate gyroscope has been used popularly to measure the angular motion of a given vehicle using a symmetric rotor spinning rapidly about its symmetry axis. Since the rapid rotation is required in this type of gyroscope, the motor has been used to make the rotor spin, so that it results in a heavy configuration. The tuning-fork gyroscope has been developed to avoid this problem, which utilizes a coriolis coupling term and vibration about one axis. Because of the coriolis effect, the vibration of one axis is transferred to other axis when the angular motion along the vibrating axis is given to the system. The concept of a tuning-fork gyroscope was recently realized using MEMS techniques. However, the dynamic characteristics of the tuning-fork gyroscope has not been discussed in detail. In this study, we derived the equations of motion for the tuning-fork type gyroscope using the energy approach and investigated the dynamic characteristics by means of numerical analysis.

  • PDF

Physical Model Investigation of a Compact Waste Water Pumping Station

  • Kirst, Kilian;Hellmann, D.H.;Kothe, Bernd;Springer, Peer
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.285-291
    • /
    • 2010
  • To provide required flow rates of cooling or circulating water properly, approach flow conditions of vertical pump systems should be in compliance with state of the art acceptance criteria. The direct inflow should be vortex free, with low pre-rotation and symmetric velocity distribution. Physical model investigations are common practice and the best tool of prediction to evaluate, to optimize and to document flow conditions inside intake structures for vertical pumping systems. Optimization steps should be accomplished with respect to installation costs and complexity on site. The report shows evaluation of various approach flow conditions inside a compact waste water pumping station. The focus is on the occurrence of free surface vortices and the evaluation of air entrainment for various water level and flow rates. The presentation of the results includes the description of the investigated intake structure, occurring flow problems and final recommendations.

삭제나무를 이용한 새로운 순서화 방법 (A New Ordering Method Using Elimination Trees)

  • 박찬규;도승용;박순달
    • 대한산업공학회지
    • /
    • 제29권1호
    • /
    • pp.78-89
    • /
    • 2003
  • Ordering is performed to reduce the amount of fill-ins of the Cholesky factor of a symmetric positive definite matrix. This paper proposes a new ordering algorithm that reduces the fill-ins of the Cholesky factor iteratively by elimination tree rotations and clique separators. Elimination tree rotations have been used mainly to reorder the rows of the permuted matrix for the efficiency of storage space management or parallel processing, etc. In the proposed algorithm, however, they are repeatedly performed to reduce the fill-ins of the Cholesky factor. In addition, we presents a simple method for finding a minimal node separator between arbitrary two nodes of a chordal graph. The proposed reordering procedure using clique separators enables us to obtain another order of rows of which the number of till-ins decreases strictly.

Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

  • Zhou, Li;Chuang, Zhenju;Bai, Xu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.119-128
    • /
    • 2018
  • A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

Solar Interior Currents Presumed by Solar Surface Magnetic Fields

  • Bogyeong Kim;Yu Yi
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.187-194
    • /
    • 2023
  • The remote sensing technique of measuring the magnetic field was applied first to sunspots by Hale (1908). Later Babcock (1961) showed that the solar surface magnetic field on a global scale is a dipole in first-order approximation and that this dipole field reverses once every solar cycle. The Wilcox Solar Observatory (WSO) supplies the spherical harmonics coefficients of the solar corona magnetic field of each Carrington Rotation, calculated based on the remotely-sensed photospheric magnetic field of the solar surface. To infer the internal current system producing the global solar coronal magnetic field structure and evolution of the Sun, we calculate the multipole components of the solar magnetic field using the WSO data from 1976 to 2019. The prominent cycle components over the last 4 solar activity cycles are axis-symmetric fields of the dipole and octupole. This implies that the current inversion driving the solar magnetic field reversal originates from the equatorial region and spreads to the whole globe. Thus, a more accurate solar dynamo model must include an explanation of the origin and evolution of such solar internal current dynamics.

STUDY OF M82 USING SPECTRA FROM THE INFRARED SPACE OBSERVATORY

  • SOHN JUNGJOO;ANN H. B.;PAK SOOJONG;LEE H. M.
    • 천문학회지
    • /
    • 제34권1호
    • /
    • pp.17-24
    • /
    • 2001
  • We have studied the central parts of M82, which is a well-known infrared luminous, starburst galaxy, by analyzing archival data from the Infrared Space Observatory (ISO). M82 was observed at 11 positions covering $\pm$45" from the center along the major axis. We analyzed 4 emission lines, [ArIII] 8.99 ${\mu}m$, $H_2$ 17.034 ${\mu}m$, [FeII] 25,98 ${\mu}m$, and [SiII] 34,815 ${\mu}m$ from $SWSO_2$ data. The integrated flux distributions of these lines are quite different. The $H_2$ line shows symmetric twin peaks at $\~$18" from the center, which is a general characteristic of molecular lines in starburst or barred galaxies. This line appears to be associated with the rotating molecular ring at around $\~$200 pc just outside the inner spiral arm. The relative depletion of the $H_2$ line at the center may be due to the active star formation activity which dissociates the $H_2$ molecules. The other lines have peaks at the center and the distributions are nearly symmetric. The line profiles are deconvolved assuming that both intrinsic and instrumental profiles are Gaussian. The velocity dispersion outside the core is found to be $\~50 km s^{-1}$. The central velocity dispersion is much higher than $50 km s^{-1}$, and different lines give different values. The large central velocity dispersion ($\sigma$) is mostly due to the rotation, but there is also evidence for a high $\sigma$ for [ArIII] line. We also generated position-velocity maps for these four lines. We found very diverse features from these maps.

  • PDF

이심률 및 각막형상이 자세변화에 의한 토릭소프트렌즈의 회전에 미치는 영향 (The Effects of Corneal Eccentricity and Shape on Toric Soft Lens Rotation by Change of Postures)

  • 김소라;한신웅;송지수;박미정
    • 한국안광학회지
    • /
    • 제18권4호
    • /
    • pp.449-456
    • /
    • 2013
  • 목적: 렌즈 착용자의 자세가 변했을 때 각막이심률 및 각막형상이 토릭소프트렌즈의 회전 양상에 미치는 영향을 알아보고자 하였다. 방법: 각막난시 -1.00 D의 직난시를 가진 20대 남녀 41안의 이심률을 측정하고 전체난시량에 따라 토릭소프트렌즈를 피팅하였다. 정자세와 누운 자세일 때의 토릭소프트렌즈의 회전을 슬릿램프에 장착된 카메라를 이용하여 촬영하고 분석하였다. 결과: Accelerated stabilization 디자인의 토릭소프트렌즈는 이심률에 관계없이 대부분 누운 방향인 귀쪽으로 회전하였으며 이심률이 큰 경우와 비대칭나비형 각막에서는 코쪽으로 회전하는 경우도 있었다. 렌즈착용 직후 정자세와 누운 자세에서 회전양과 이심률은 상관관계가 없었으나 일정 시간동안 누운 자세로 있는 경우는 이심률이 큰 각막에서 회전양이 더 컸다. 회전속도는 누운 자세로 변화된 직후부터 속도가 감소하였으며, 이심률에 따른 큰 차이는 없었다. 누운 자세로 변화된 직후 대칭나비형과 비대칭나비형의 경우는 타원형 각막에 비해 회전양이 더 크게 증가하였으며 일정 시간이 지난 후에도 마찬가지였다. 누운 자세에서의 렌즈회전속도는 다른 각막형태에 비해 비대칭나비에서 가장 느렸다. 결론: 본 연구를 통하여 자세변화시 토릭소프트렌즈의 회전 양상은 각막이심률 및 각막형상에 의해 영향을 받는다는 것을 알 수 있었다. 따라서 토릭소프트렌즈 피팅 및 디자인 개발 시에 이에 대한 고려가 이루어져야 할 것으로 보인다.

인접 영상 프레임에서 기하학적 대칭점을 이용한 카메라 움직임 추정 (Camera Motion Estimation using Geometrically Symmetric Points in Subsequent Video Frames)

  • 전대성;문성헌;박준호;윤영우
    • 전자공학회논문지CI
    • /
    • 제39권2호
    • /
    • pp.35-44
    • /
    • 2002
  • 카메라의 이동과 회전은 영상 프레임 전체에 영향을 미치는 전역 움직임(global motion)을 유발한다. 이러한 전역 움직임을 포함하는 영상을 부호화하는 경우, 변화성분 검출(change detection) 기법을 사용하여 정확한 오브젝트를 분할하는 것은 실제적으로는 불가능하며 큰 움직임 벡터로 인해 높은 압축률을 얻기 어렵다. 이러한 문제는 전역 움직임이 보상된 영상 시퀀스를 사용함으로써 해결할 수 있다. 전역 움직임 보상을 위한 기존의 카메라 움직임 추정 방법들은 계산량이 많다는 문제점을 가지고 있다. 따라서, 본 논문에서는 간단한 선 형식으로 구성되는 전역 움직임 추정 알고리즘을 제안한다 제안 알고리즘은 영상 프레임 내의 대칭점(symmetric points)의 움직임 정보를 이용하여 패닝(panning)과 틸팅(tilting), 줌잉(zooming)에 대한 전역 움직임 파라미터를 산출한다. 전역 움직임 계산에는 카메라 회전에 대해 깊이(depth)에 독립적인 원경만이 사용되며, 영상 내에서 원경을 구분하기 위한 판별식도 논문에 제시된다. 또한, MPEG 시험 영상을 사용한 실험 결과도 나타내었다. 본 논문에서 제안한 기법의 실시간 수행 능력은 많은 영상처리 분야의 전처리 단계에서 사용될 수 있다.