• Title/Summary/Keyword: rotation surfaces

Search Result 112, Processing Time 0.029 seconds

Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump (루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석)

  • Lee, Chan;Kil, Hyun-Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

PIV analysis of free surface effects on flow around a rotating propeller with varying water depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik Bu Geun;Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.40-43
    • /
    • 2004
  • The effects of free surface on wake behind a rotating propeller were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique at tow different blade phases and ensemble-averaged to investigate the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is influenced by the propeller rotation and the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake are formed by the boundary layers developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. Tip vortices are generated periodically and the slipstream contracts in the near-wake region. The presence of free surface affects the wake structure largely, when the water depth is less than 0.6D. The free surface modifies the vortex structure, especially the tip and trailing vortices and flow structure in slipstreams of the propeller wake behind X/D = 0.3.

  • PDF

A Study on Sealing Performance of Elastomeric Rotary Lip Seals for Washing Machines (세탁기용 고무 회전 씨일의 밀봉 성능에 관한 연구)

  • Kim, Tae-Hyung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.102-108
    • /
    • 2015
  • In this research, we experimentally investigated the sealing performance of elastomeric rotary lip seals for washing machines. In general, NBR is used as a material for elastomeric rotary lip seals in washing machines, but the mixing formula of the rubber material can affect the sealing performance. In this study, we manufactured rotary lip seals using three kinds of NBRs with a different mixing formula, and examined the sealing performance using an acceleration test mode. The results of an SEM investigation into the surfaces of three kinds of specimens showed a much smaller wear volume and better sealing performance for the specimens with smaller particle sizes of mixing composition than for the specimen with the larger. Repeated deformation and recovery by the shaft-to-seal eccentricity on rotation were shown to cause a phase difference in the rubber material, and we measured the recovery ratio to find the influence of this phase difference on the sealing performance. As another method for checking the phase difference, we also measured tan ä, and a lower tan ä was revealed as the recovery ratio increased for each specimen. Specimens with a higher recovery ratio (lower tan ä) were shown to have a better sealing performance. Consequently, specimens with a smaller particle size in the mixing composition had a better sealing performance because they show a higher recovery ratio.

Method of Automatic Reconstruction and Animation of Skeletal Character Using Metacubes (메타큐브를 이용한 캐릭터 골격 및 애니메이션 자동 생성 방법)

  • Kim, Eun-Seok;Hur, Gi-Taek;Youn, Jae-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.135-144
    • /
    • 2006
  • Implicit surface model is convenient for modeling objects composed of complicated surfaces such as characters and liquids. Moreover, it can express various forms of surface using a relatively small amount of data. In addition, it can represent both the surface and the volume of objects. Therefore, the modeling technique can be applied efficiently to deformation of objects and 3D animation. However, the existing implicit primitives are parallel to the axis or symmetrical with respect to the axes. Thus it is not easy to use them in modeling objects with various forms of motions. In this paper, we propose an efficient animation method for modeling various poses of characters according to matching with motion capture data by adding the attribute of rotation to metacube which is one of the implicit primitives.

  • PDF

Liquid Crystal Alignment on Multi-stacked Layer HfO2 Thin Films Using a Solution-process (용액 공정 기반의 다중 적층된 HfO2 박막 상에서의 액정 배향)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.821-825
    • /
    • 2013
  • Effect of multi-stacked layer (MSL), 0.1 mol (M) and 0.3 mol (M) hafnium oxide ($HfO_2$) alignment layers were fabricated via a solution-process for LCs orientation. The solutions were spin-coated and annealed in a furnace. MSL consists of three sub-layers using 0.1 M solution, mono-layer (ML) is composed of 0.3 M $HfO_2$ solution. Then ion-beam irradiation was treated with 1.8 keV for 2 min. $HfO_2$-based LC cells were investigated through photographs, pre-tilt angle using crystal rotation method, X-ray photoelectron spectroscopy (XPS) measurement, and surface roughness using atomic force microscopy(AFM) for their characteristic research. Good LC orientation characteristics were observed on MSL $HfO_2$ surface. The LC alignment mechanism on MSL $HfO_2$ and ML $HfO_2$ surfaces was attributed to van der Waals (VDW) interaction between the LC molecular and substrate surface.

Grouping Algorithm for Custom-tailored Products (주문헝제품의 생산을 위한 집합화 알고리즘의 개발)

  • 김승엽;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Custom-tailored products always vary their sizes and shapes to satisfy the customers' tastes and requirements but they have to be fabricated as fast as possible when ordered. One way to solve this problem is to prepare several representative products in advance and each custom-tailored product is generated by machining the closest representative product. To realize this approach, it would be necessary to be able to group the products into several groups each of which has a representative product. Once the similar products are identified to be grouped, the representative shape can be generated such that all the products in the group can be made by machining the representative product. The custom-tailored products considered in this work have similar shapes but different sizes. Since these products have free surfaces, that are hard to be compared, their convex hulls are used for the grouping. Among all the products to be grouped, one product is chosen as a base shape. The shape and overall similarity values between the base shape and the remaining shapes are calculated as their convex hulls are rotated virtually. By calculating these similarity values at each rotation, the optimal alignment of the reference shape with respect to the base shape is determined. Overall similarity value at this optimal alignment is used as a measure for grouping. A prototype system based on the proposed methodology has been implemented and used to group the shoe-lasts for custom-tailored shoes.

Measurements of Minute Unsteady Pressure on Three-Dimensional Fan with Arbitrary Axis Direction

  • Hirata, Katsuya;Fuchi, Takuya;Onishi, Yusuke;Takushima, Akira;Sato, Seiji;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • The present study is a fundamental approach to develop the measuring technology for minute fluctuating pressures on the three-dimensional blade surfaces of the fan which rotates with an arbitrary rotation-axis direction. In this situation, we are required to correct the centrifugal-force effect, the gravitational-force effect and the other leading-error effects for accurate measurements of the minute pressures. The working fluid is air. A pressure transducer rotating with an arbitrary attitude is closely sealed by a twofold shroud system. The rotational motion with an arbitrary attitude is produced by fixing the pressure transducer to the cantilever which is connected to a motor-driven disc of 500mm in diameter and 5mm in thickness. As a result, we have quantitatively determined main governing effects upon the non-effective component of the pressure-transducer signal.

Improvement in Surface Roughness by Multi Point B Axis Control Method in Diamond Turning Machine (다이아몬드 터닝머신에서 다중점 B 축 제어 가공법을 통한 표면거칠기 향상)

  • Kim, Young-Bok;Hwang, Yeon;An, Jung-Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong;Kim, Dong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.983-988
    • /
    • 2015
  • This paper details a new ultra-precise turning method for increasing surface quality, "Multi Point B Axis Control Method." Machined surface error is minimized by the compensation machining process, but the process leaves residual chip marks and surface roughness. This phenomenon is unavoidable in the diamond turning process using existing machining methods. However, Multi Point B axis control uses a small angle (< $1^{\circ}$) for the unused diamond edge for generation of ultra-fine surfaces; no machining chipping occurs. It is achieved by compensated surface profiling via alignment of the tool radial center on the center of the B axis rotation table. Experimental results show that a diamond turned surface using the Multi Point B axis control method achieved P-V $0.1{\mu}m$ and Ra 1.1nm and these ultra-fine surface qualities are reproducible.

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

PIV Analysis of Free Surface Effects on Flow Around a Rotating Propeller with Varying Water Depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik, Bu-Geun;Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.427-434
    • /
    • 2005
  • The free surface influenced the wake behind a rotating propeller and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique and ensemble-averaged to study the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is affected only by the propeller rotation speed, the leading on the blades and the proximity of the propeller to the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. The presence of the free surface greatly affected the wake structure, especially for propeller immersion depth of 0.6D. At small immersion depths, the free surface modified the tip and trailing vortices and the slipstream flow structure downstream of X/D = 0.3 in the propeller wake.