• Title/Summary/Keyword: rotation surfaces

Search Result 110, Processing Time 0.025 seconds

Rotor fan effects on end winding heat transfer in totally enclosed fan cooled induction motor (전폐형 유도전동기 엔드와인딩 표면의 열전달에 미치는 회전자팬의 영향)

  • Yun, Myeong-Geun;Go, Sang-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.928-938
    • /
    • 1997
  • The end winding is an important part in induction motor for thermal analysis. But there is little information on the heat transfer coefficient of that surfaces because of geometrical complexity. So our experimental object is to know the heat transfer coefficient of end winding and find the optimum design parameter of rotor fan. Carbon coated papers were used for a uniform heat generating surfaces which were easy to fabricate. The experiments of some parameters were performed as varying rotation speed of rotor fan. We obtained the local and average Nusselt number of the end winding surfaces by correcting radiation and conduction losses errors. The results showed that the average Nusselt number increased with rotor fan blade number and width but decreased with end winding length. However, the increasing limits existed in the case of rotor fan width and blade number. So optimum design value were obtained for rotor fan width and blade numbers.

The Development of Multi-view point Image Interpolation Method Using Real-image

  • Yang, Kwang-Won;Park, Young-Bin;Huh, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.1-129
    • /
    • 2001
  • In this paper, we present an approach for matching images from finding interesting points and applying new image interpolation algorithm. New algorithms are developed that automatically align the input images match them and reconstruct 3-D surfaces. The interpolation algorithm is designed to cope with simple shapes. The proposed image interpolation algorithm generate a rotation image about vertical axes by an any angle from 4 base images. Each base image that was obtained from CCD camera has an angle difference of 90$^{\circ}$ The proposed image interpolation algorithm use the geometric analysis of image and depth information.

  • PDF

Characteristics of adhesion areas between the tissue expander and capsule in implant-based breast reconstruction

  • Lim, Yoon Min;Park, Kwang Hyun;Lee, Dong Won;Lew, Dae Hyun;Roh, Tai Suk;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.330-335
    • /
    • 2019
  • Background The use of anatomic implants has improved the aesthetic results of breast surgery; however, implant malrotation is an uncommon, but serious complication of these procedures. Nevertheless, little research has explored implant adhesion. In this study, we investigated adhesion between the expander and the capsule. Methods Seventy-nine cases of immediate breast reconstruction via two-stage implant-based reconstruction performed between September 2016 and November 2017 were evaluated. Mentor CPX4 expanders were used in 14 breasts, and Natrelle expanders in 65. We analyzed areas of adhesion on the surfaces of the tissue expanders when they were exchanged with permanent implants. We investigated whether adhesions occurred on the cephalic, caudal, anterior, and/or posterior surfaces of the expanders. Results Total adhesion occurred in 18 cases, non-adhesion in 15 cases, and partial adhesion in 46 cases. Of the non-adhesion cases, 80% (n=12) were with Mentor CPX4 expanders, while 94.4% (n=17) of the total adhesion cases were with Natrelle expanders. Of the partial adhesion cases, 90.7% involved the anterior-cephalic surface. The type of tissue expander showed a statistically significant relationship with the number of attachments in both univariate and multivariate logistic regression analyses (P<0.001) and with total drainage only in the univariate analysis (P=0.015). Conclusions We sought to identify the location(s) of adhesion after tissue expander insertion. The texture of the implant was a significant predictor of the success of adhesion, and partial adhesion was common. The anterior-cephalic surface showed the highest adhesion rate. Nevertheless, partial adhesion suffices to prevent unwanted rotation of the expander.

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Lee Dong Hyun;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.

Minimization of Surface Roughness for High Speed Machining by Surface Fitting (곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화)

  • Jung Jong-Yun;Cho Hea-Young;Lee Choon-Man;Moon Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

Effects of Bleed Hole on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs (90도 요철이 설치된 회전덕트에서 유출홀이 열/물질전달에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.178-184
    • /
    • 2005
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter ($D_h$) of the square channel is 40.0 mm. The bleed holes are located between the rib turburators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height (e) and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow were fixed at 10,000 and 10%, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Cariolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

  • PDF

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

Solid-liquid mixture flow characteristics in an inclined slim hole annulus (Slim hole 경사 환형관내 고-액 혼합유동 특성에 관한 연구)

  • Suh, Byung-Taek;Han, Sang-Mok;Woo, Nam-Sub;Kim, Young-Ju;Hwang, Young-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1315-1320
    • /
    • 2008
  • An experimental study was carried out to study the solid-liquid mixture upward flow in a vertical and inclined annulus with rotating inner cylinder. Lift forces acting on a fluidized particle plays a central role in many importance applications, such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport and cleaning of particles from surfaces, etc. Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. Effect of annulus inclination and drill pipe rotation on the carrying capacity of drilling fluid, particle rising velocity, and pressure drop in the slim hole annulus have been measured for fully developed flows of water and of aqueous solutions.

  • PDF

Depth Measurement System Using Structured Light, Rotational Plane Mirror and Mono-Camera (선형 레이저와 회전 평면경 및 단일 카메라를 이용한 거리측정 시스템)

  • Yoon Chang-Bae;Kim Hyong-Suk;Lin Chun-Shin;Son Hong-Rak;Lee Hye-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.406-410
    • /
    • 2005
  • A depth measurement system that consists of a single camera, a laser light source and a rotating mirror is investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. Advantages are 1) the image of the light stripe remains sharp while that of the background becomes blurred because of the mirror rotation and 2) the only rotating part of this system is the mirror but the mirror angle is not involved in depth computation. This minimizes the imprecision caused by a possible inaccurate angle measurement. The detail arrangement and experimental results are reported.