• Title/Summary/Keyword: rotation surfaces

Search Result 110, Processing Time 0.027 seconds

Experimental Study on the Leakage Performance Characteristics of Floating Ring Seal (플로팅 링 실의 누설 특성에 관한 실험적 연구)

  • 안경민;이용복;김창호;하태웅
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.183-189
    • /
    • 2004
  • The floating ring seal is used in an oxidizer and a fuel pump of the turbo pump unit in the liquid rocket engine to optimize a leakage without rubbing phenomenon. The damper floating ring seal, one of the floating ring seals, is with round hole pattern surfaces. It can reduce the leakage by increased friction factor that obtained from experimental data. In this paper, the leakage test about floating ring seal and damper floating ring seal was conducted. The test result showed the leakage performance of damper floating ring seal was better than the leakage performance of floating ring seal. With the leakage test the lock-up and rotation test about seal was conducted and that position is measured. The relatively large lock-up eccentric ratio was obtained from the test result of damping floating ring seal. The attitude angle of seal increases with increasing of shaft rotation.

Experimental Study on the Leakage Performance Characteristics of floating Ring Seal (플로팅 링 실의 누설 특성에 관한 실험적 연구)

  • 안경민;이용복;김창호;하태웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.820-825
    • /
    • 2004
  • The floating ring seal is used in an oxidizer and a fuel pump of the turbo pump unit in the liquid rocket engine to optimize a leakage without rubbing phenomenon. The damper floating ring seal, one of the floating ring seals, is with round hole pattern surfaces. It can reduce the leakage by increased friction factor that obtained from experimental data. In this paper, the leakage test about floating ring seal and damper floating ring seal was conducted. The test result showed the leakage performance of damper floating ring seal was better than the leakage performance of floating ring seal. With the leakage test the lock-up and rotation test about seal was conducted and that position is measured. The relatively large lock-up eccentric ratio was obtained from the test result of damping floating ring seal. The attitude angle of seal increases with increasing of shaft rotation

  • PDF

Shell Finite Element Based on B-Spline Representation for Finite Rotations (B-Spline 곡면 모델링을 이용한 기하비선형 쉘 유한요소)

  • 노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.429-436
    • /
    • 2003
  • A new linkage framework between elastic shell element with finite rotation and computar-aided geometric design (CAGD) (or surface is developed in the present study. The framework of shell finite element is based on the generalized curved two-parametric coordinate system. To represent free-form surface, cubic B-spline tensor-product functions are used. Thus the present finite element can be directly linked into the geometric modeling produced by surface generation tool in CAD software. The efficiency and accuracy of the Previously developed linear elements hold for the nonlinear element with finite rotations. To handle the finite rotation behavior of shells, exponential mapping in the SO(3) group is employed to allow the large incremental step size. The integrated frameworks of shell geometric design and nonlinear computational analysis can serve as an efficient tool in shape and topological design of surfaces with large deformations.

  • PDF

Effects of Bleed Flow and Angled Ribs on Heat Transfer Distributions in a Rotating Square Channel (유출유동 및 각도진 요철이 회전하는 사각덕트 내 열전달분포에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.76-82
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a square channel with $45^{\circ}$ rib turbulators. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleed ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, decrement of main flow rate, secondary flow by angled ribs and bleed hole location. As the bleed ratio (BR) increased, the heat/mass transfer decreased on both surfaces due to the reduction of main flow rate. With increment of the rotation number, heat/mass transfer also decreased and almost the same because the reattachment of the secondary flow induced by angled ribs was weakened on the leading surface and the secondary flow was disturbed on the trailing surface by the Coriolis force.

Study on Surface Roughness due to WA-BF-Fe Grain for Internal Magnet-abrasive Finishing Apparatus of STS 304 Pipe (STS 304 파이프 내면의 자기연마법에 있어서 WA-BF-Fe 자성입자가 표면거칠기에 미치는 영향)

  • 김용수;정윤중;김희남;김순채;배재만
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.35-40
    • /
    • 2001
  • An internal finishing process applying Magnetic Abrasive Finishing (MAF) was proposed to produce smooth inner surfaces of tubes at a high rate. Since this process uses the tube rotation system, it has been considered applicable only to tubes which are rotatable at high speeds. Here development of the stainless tube(STS 304) rotation system to extend the scope of the application of the internal finishing process applying MAF was made. By the stainless tube(STS 304) rotation system, the abrasive magnetically attracted by the poles is rotated along the inner surface of the tube by magnetic force together with fixed poles, finishing the inner surface of the tube. The main results obtained are as follows : 1) The magnet abrasive finishing minimized influence due to external force because non-contact finishing, 2) The profile of surface roughness decreased very good in 11.4m/min range because abrasive size and speed, 3) The profile of surface roughness by flux density decreased in finishing speed 28m/min, 4) The profile of surface roughness by fled rate decreased in 0.16mm/rev and 0.18mm/rev.

  • PDF

Heat/Mass Transfer Characteristics in A Rotating Duct with $180^{\circ}$ Turn ($180^{\circ}$ 곡관부를 가지는 회전 덕트에서의 열/물질전달 특성)

  • Won, Chung-Ho;Lee, Sei-Young;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a rotating two-pass rectangular duct. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The objective of this study is to determine the effects of turning geometry with rotation for 0.0$\leq$Ro$\leq$0.24. The results reveal that the sharp-turn corner has the larger pressure drop and lower heat transfer in the post-turn region than those of the round-turn corner. The strong secondary flow enhances heat transfer for the round-turn corner. Coriolis force induced by the rotation pushes the high momentum core flow toward the trailing wall in the first passage with radially outward flow and toward the leading wall in the second passage with radially inward flow. Consequently, the high heat transfer rates are generated on the trailing surface and the leading surface in the first and second passage, respectively. However, the strong secondary flow due to the turning dominates the flow pattern in the second passage, thus the heat transfer differences between the leading and trailing surfaces are small with the rotation.

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

3D Human Face Segmentation using Curvature Estimation (Curvature Estimation을 이용한 3차원 사람얼굴 세그멘테이션)

  • Seongdong Kim;Seonga Chin;Moonwon Choo
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.985-990
    • /
    • 2003
  • This paper presents the representation and its shape analysis of face by features based on surface curvature estimation and proposed rotation vector of the human face. Curvature-based surface features are well suited to use for experimenting the 3D human face segmentation. Human surfaces are exactly extracted and computed with parameters and rotated by using active surface mesh model. The estimated features were tested and segmented by reconstructing surfaces from the face surface and analytically computing Gaussian (K) and mean (H) curvatures without threshold.

  • PDF

Adsorption Mechanism of Benzene and Its Derivatives on Graphite Surfaces (벤젠과 그 유도체들의 흑연표면 위의 흡착메카니즘)

  • Kim Yunsoo;Ahn, Young-Soo;Pak, Hyung-Suk;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.79-84
    • /
    • 1974
  • Adsorption isotherms of benzene and its derivatives on Spheron 6, a graphitized carbon black, are obtained using a sensitive quartz beam microbalance. From the isotherms the molecular area of each adsorbate on Spheron 6 is calculated on the basis of nitrogen area of 16.2 $A^2$. the results show that the molecules of each species are adsorbed on Spheron 6 with the planes of benzene rings lying flat on the surfaces and doing hindered rotation.

  • PDF

Advanced Internal Cooling Passage of Turbine Blade using Coriolis Force (전항력을 이용한 회전 블레이드 냉각성능 향상 방안 연구)

  • Park, Jun Su
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.37-41
    • /
    • 2016
  • The serpentine internal passage is located in turbine blade and it shows the variety heat transfer distribution. Especially, the Coriolis force, which is induced by blade rotation, makes different heat transfer distribution of the leading and trailing surfaces of serpentine internal passage. The different heat transfer is one of the reasons why the serpentine cooling passage shows low cooling performance in the rotating condition. So, this study tried to design the advanced the serpentine passage to consideration of the Coriolis force. The design concept of advanced serpentine cooling is maximizing cooling performance using the Coriolis force. So, the flow turns from leading surface to trailing surface in advanced serpentine passage to match the direction of Coriolis force and rotating force. We performed numerical analysis using CFX and compared the existing and advanced serpentine internal passage. This design change is induced the high heat transfer distribution of whole advanced serpentine internal passage surfaces.