• Title/Summary/Keyword: rotation point

Search Result 585, Processing Time 0.029 seconds

A Novel Implementation of Rotation Detection Algorithm using a Polar Representation of Extreme Contour Point based on Sobel Edge

  • Han, Dong-Seok;Kim, Hi-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.800-807
    • /
    • 2016
  • We propose a fast algorithm using Extreme Contour Point (ECP) to detect the angle of rotated images, is implemented by rotation feature of one covered frame image that can be applied to correct the rotated images like in image processing for real time applications, while CORDIC is inefficient to calculate various points like high definition image since it is only possible to detect rotated angle between one point and the other point. The two advantages of this algorithm, namely compatibility to images in preprocessing by using Sobel edge process for pattern recognition. While the other one is its simplicity for rotated angle detection with cyclic shift of two $1{\times}n$ matrix set without complexity in calculation compared with CORDIC algorithm. In ECP, the edge features of the sample image of gray scale were determined using the Sobel Edge Process. Then, it was subjected to binary code conversion of 0 or 1 with circular boundary to constitute the rotation in invariant conditions. The results were extracted to extreme points of the binary image. Its components expressed not just only the features of angle ${\theta}$ but also the square of radius $r^2$ from the origin of the image. The detected angle of this algorithm is limited only to an angle below 10 degrees but it is appropriate for real time application because it can process a 200 degree with an assumption 20 frames per second. ECP algorithm has an O ($n^2$) in Big O notation that improves the execution time about 7 times the performance if CORDIC algorithm is used.

Contact Stress Analysis of Helical Gear for Turbo Blower (터보블로워용 헬리컬 기어의 접촉응력 해석)

  • Hwang, Seok-Cheol;Lee, Dong-Hyong;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • This paper presents the study on the contact stress analysis of a pair of mating helical gears for turbo blower during rotation. Turbo blowers need high speed rotation of impeller in structure and high rate gear ratio. The use of helical gear indicated that noise was an important problem when the application involves high speeds and large power transmission. An example is presented to investigate the variation of contact stress on a pair of mating gears with contact positions. The variation of contact stress during rotation is compared with the contact stress at the lowest point of single tooth contact(LPSTC) and AGMA Equation for contact stress. In this study, the gear design considering the contact stress on a pair of mating gear is more severe than that of AGMA standard.

Rotation Robust for Fingerprint Recognition System (회전된 지문에 강인한 지문 인식 시스템에 관한 연구)

  • Kim, Won-Joong;Cho, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.542-545
    • /
    • 2002
  • Position transfer and turning rotation between fingerprint and inputted fingerprint that is registered in automatic fingerprint recognition system are one of main cause that mistaken acknowledgment expression happens. Therefore, in this research, conformity algorithm development that do it so that is unrelated in position translation and rotation of fingerprint at feature point conformity step to secure higher correct recognition rate.

  • PDF

Stereo Matching for PCB Image (PCB 영상의 스테레오 정합)

  • 최춘호;문철홍
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.943-946
    • /
    • 1998
  • In this paper, we applied FFT to PCB Images, cutting unnecessary singals and noise, moving the starting point to center of image and used rotaion transform. from the detected edge Hough Transform identify the length, but not the angle, so we matched PCB images with using rotation transform to identify length and angle. After rotation transform we employ Least Squared Method to exact stereo matching.

  • PDF

A CEPHALOMETRIC STUDY ON THE HARD AND SOFT TISSUE CHANGES BY THE PAPID PALATAL EXPANSION IN ANGLE'S CLASS III MALOCCLUSION (상악골 급속확장에 의한 Angle씨 제 III급 부정교합 환자의 안모형태 변화에 관한 두부방사선 계측학적 연구)

  • Tahk, Seon Gun;Ryu, Young Kyu
    • The korean journal of orthodontics
    • /
    • v.14 no.1
    • /
    • pp.161-172
    • /
    • 1984
  • This study was undertaken to evaluate the cephalometric changes of the soft tissue and skeletal profile subsequent 10 the rapid palatal expansion in 25 Angle's Class III cases, ranging in age from six to fifteen years, with cross-bite of the anterior teeth, underdevelopment of maxilla and facial disharmony Following results were obtained: 1. ANS moved downward, Point A presented forward & downward movement increasing SNA and Point B presented backward & downward movement decreasing SNB. 2. Mandible was rotated to backward & forward and maxilla moved forward & downward with the bite opening and improvement of anterior teeth cross-bite. 3. Soft tissue on mandible was rotated to backward & forward following hard tissue changes causing the decrease of facial convexity angle and backward & downward rotation of Point B', Pog'. 4. Response of the upper lip was more significant in downward than forward direction, and correlated with the upper central incisor and mandible rotation. 5. Response of the lower lip was more significant in downward than backward direction, and correlated with the mandible rotation. 6. There was a rather high degree of correlation between skeletal profile and soft-tissue profile, 1 : LS, $\bar{1}$:Pog', Pog:LS, Pog:LI, Pog:Pog' in horizontal measurements and $\bar{1}$:Pog', Pog:LI, Pog:Pog' in vertical measurements.

  • PDF

Effective Sonar Grid map Matching for Topological Place Recognition (위상학적 공간 인식을 위한 효과적인 초음파 격자 지도 매칭 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2011
  • This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment.

Direct RTI Fingerprint Identification Based on GCMs and Gabor Features Around Core point

  • Cho, Sang-Hyun;Sung, Hyo-Kyung;Park, Jin-Geun;Park, Heung-Moon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.446-449
    • /
    • 2000
  • A direct RTI(Rotation and translation invariant) fingerprint identification is proposed using the GCMs(generalized complex moments) and Gabor filter-based features from the grey level fingerprint around core point. The core point is located as reference point for the translation invariant matching. And its symmetry axis is detected for the rotation invariant matching from its neighboring region centered at the core point. And then, fingerprint is divided into non-overlapping blocks with respect to the core point and, in contrast to minutiae-based method using various processing steps, features are directly extracted from the blocked grey level fingerprint using Gabor filter, which provides information contained in a particular orientation in the image. The Proposed fingerprint identification is based on the Euclidean distance of the corresponding Gabor features between the input and the template fingerprint. Experiments are conducted on 300 ${\times}$ 300 fingerprints obtained from the CMOS sensor with 500 dpi resolution, and the proposed method could obtain 97% identification rate.

  • PDF

Earth Pressure Distribution with Rigid Retaining Wall Movements (강성토유벽의 움직임에 따른 토압분포)

  • 강병희;채승호
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1989
  • Lateral earth Pressure distributions due to the ,randy soil backfill behind the rigid vertical walls for three different wall movement modes are obtained by the elasto-plastic finite element analys of soil deformation, and these earth pressures are compared with both Rankine's and Dubrova's active earth pressures. Thereby, the effects of the magnitude and the mode of wall displacement on the earth pressure distribution are investigated. Three different modes of wall movement considered in this study are the rotation about bottom, the rotation about top and the translation. For the case of the wall rotation about top, the earth pressure distribution is shown as a reverse S-curve-shaped distribution due to the arching effect. Consequently, the point of application of the lateral thrust is much higher than one-third of the wall height from the base. And, comparing the other modes of wall movement, the magnitude and the point of appliestion of the lateral thrust for the wall rotation about top are larger and higher, respectively. The wedge-shaped plastic zone in the backfill at active failure is developed only for the mode of wall rotation about bottom. The lateral earth pressure distributions on the walls with inclined backfill of several different slopes are shown for the mode of wall rotation about bottom.

  • PDF

Design of Butterfly Valve Disk to Minimize Interference at Opening and Closing (개폐 시 최소 간섭을 갖는 버터플라이 밸브 디스크의 설계)

  • Choi Young;Boo Kwangsuk;Yeo Hong-Tae;Hur Kwando;Kim Hokwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.140-145
    • /
    • 2004
  • In this study, the design and analysis of a butterfly valve disk was performed to minimize the rubbing between the disk and the seat at opening and closing. The butterfly valve has double eccentric structure and the contact surface between the disk and the seat is a conical surface. At the instant of opening and closing the valve by the rotation of disk, the positions of zero contact point are changed. Also, if the cone surface is cut in the perpendicular direction to the rotation axis of the valve, the contour of cutting section is hyperbolic. Therefore minimum distance between the origin of the eccentric axis and the hyperbolic curve goes to the position of zero contact point. In order to consider the interferences between the disk and the seat, the thermal-structure coupled field analysis was performed by ANSYS.

Fine-Motion Estimation Using Ego/Exo-Cameras

  • Uhm, Taeyoung;Ryu, Minsoo;Park, Jong-Il
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.766-771
    • /
    • 2015
  • Robust motion estimation for human-computer interactions played an important role in a novel method of interaction with electronic devices. Existing pose estimation using a monocular camera employs either ego-motion or exo-motion, both of which are not sufficiently accurate for estimating fine motion due to the motion ambiguity of rotation and translation. This paper presents a hybrid vision-based pose estimation method for fine-motion estimation that is specifically capable of extracting human body motion accurately. The method uses an ego-camera attached to a point of interest and exo-cameras located in the immediate surroundings of the point of interest. The exo-cameras can easily track the exact position of the point of interest by triangulation. Once the position is given, the ego-camera can accurately obtain the point of interest's orientation. In this way, any ambiguity between rotation and translation is eliminated and the exact motion of a target point (that is, ego-camera) can then be obtained. The proposed method is expected to provide a practical solution for robustly estimating fine motion in a non-contact manner, such as in interactive games that are designed for special purposes (for example, remote rehabilitation care systems).