• 제목/요약/키워드: rotating motion

검색결과 505건 처리시간 0.023초

Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys

  • Yun, Chul-Yong;Kim, Dae-Sung;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.137-147
    • /
    • 2006
  • In this study, shape memory alloy damper with characteristics of pseudoelastic hysteresis for helicopter rotor blades are investigated. SMAs can be available in damping augmentation of vibrating structures. SMAs show large hysteresis in the process of pseudoelastic austenite-martensite phase transformation which takes place while subjected to loading above the austenite finish temperature. Since SMAs display pseudoelastic hysteresis behavior over large strain ranges, a significant amount of energy dissipation is possible. A damper can be designed with SMA wires prestressed to a baseline level somewhere in the middle of the pseudoelastic stress range. An experimental study of the effects of pre-strain and cyclic strain amplitude as well as frequency on the damping behavior of pseudoelastic shape memory alloy wires are performed. The effects of the shape memory alloy damper on aeroelastic and ground resonance stability of helicopter are studied. In aeroelastic stability, the dynamic characteristics of blades related to pitch angle and the amplitude of lag motion for the rotor equipped with SMA damper were examined. The performance of SMA damper on ground resonance instability are presented through the frequencies and modal damping with respect to rotating speed.

진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구 (Machining of Repetitive Micro Patterns using Oscillation Micro Milling)

  • 노승국;김경호;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation)

  • 김도중;정영종;이중희
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

2차 가진 제어 변조분사 특성 및 액체제트의 분무특성 (Spray Characteristics of a Modulated Liquid Jet through 2nd Pulsed Control)

  • 강영수;이인철;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.672-675
    • /
    • 2010
  • 본 연구에서는 저주파영역의 가진분무에 대하여 추가적인 내부가진을 수행함으로써 변조분사되는 분무특성에 대한 연구를 수행하였다. 회전식 가진장치를 사용하여 1차 가진을 생성한 후 2차 가진원인 마그네틱 밸브를 사용하여 변조하였다. 변조분무의 FFT결과와 분무패턴의 가시화를 통하여 관찰한 결과, 2차 가진 제어가 있는 변조분사의 경우 1차 가진만 있는 분사보다 분무의 상하 운동 진폭이 작으며 분무 하단류의 침투깊이가 증가하는 경향성이 발견되었다.

  • PDF

소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석 (Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive)

  • 이성진;홍순교;정영민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

Measurements of Minute Unsteady Pressure on Three-Dimensional Fan with Arbitrary Axis Direction

  • Hirata, Katsuya;Fuchi, Takuya;Onishi, Yusuke;Takushima, Akira;Sato, Seiji;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 2010
  • The present study is a fundamental approach to develop the measuring technology for minute fluctuating pressures on the three-dimensional blade surfaces of the fan which rotates with an arbitrary rotation-axis direction. In this situation, we are required to correct the centrifugal-force effect, the gravitational-force effect and the other leading-error effects for accurate measurements of the minute pressures. The working fluid is air. A pressure transducer rotating with an arbitrary attitude is closely sealed by a twofold shroud system. The rotational motion with an arbitrary attitude is produced by fixing the pressure transducer to the cantilever which is connected to a motor-driven disc of 500mm in diameter and 5mm in thickness. As a result, we have quantitatively determined main governing effects upon the non-effective component of the pressure-transducer signal.

차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계 (Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution)

  • 김현기;이동진;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.

2축 선형 엑츄에이터의 전류 PI제어기 설계 (Design of Current PI Controller for 2-Axis Linear Actuator)

  • 전찬용;김재한;목형수;최규하;이정민;김상훈;김태훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2007
  • The actuators of anti-vibration system(AVS) can be separated into several types: piezoelectric actuators, pneumatic springs, cylinders, rotating motor and linear motor. The last one has some advantages, such as low noise, low vibration, simpler configuration and possibility of direct drive. The voice coil motor(VCM) is one type of linear motor, originally used in speaker system. VCM actuators are usually used in occasions that rapid and controlled motion of devices are required. In this paper, a controller which satisfies system specification(e.g. current controller bandwidth) within whole operation range is designed. For that objective, parameters as position were initially obtained with 3D FEM analysis and motor modeling was performed. A current controller in 2-axis VCM drive system was designed and then performance of the proposed controller was verified with simulation using Simplorer and an experimental result.

  • PDF

자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석 (Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump)

  • 김보형;정원영;백홍길;강동진;정진태
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.