• 제목/요약/키워드: rotating mirror

검색결과 56건 처리시간 0.026초

이동로봇의 장애물과의 충돌방지를 위한 새로운 3차원 거리 인식 방법 (A Novel Depth Measurement Technique for Collision Avoidance Mobile Robot)

  • 송재홍;나상익;김형석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.291-294
    • /
    • 2002
  • A simple computer vision technology to measure the middle-ranged depth with mono camera and plain mirror is proposed The proposed system is structured wiか the rotating mirror in front of the fixed mono camera In contrast to the previous stereo vision system in which the disparity of the closer object is larger than that of the distant object, the pixel movement caused by the rotating mirror is bigger for the pixels of the distant object in the proposed system Being inspired by such feature in the proposed system the principle of the depth measurement based on the relation of the pixel movement and the distance of object have been investigated. Also, the factors to influence the precision of the measurement are analysed The benefits of the proposed system are low price and less chance of occlusion. The robustness for practical usage is an additional benefit of the proposed vision system.

  • PDF

지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석 (Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure)

  • 정경문;서찬희;김명규;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

적외선 체열촬영시스템을 위한 고속 광주사기의 구현 (Realization of a High Speed Optic Scanner for Infrared Thermal Imaging)

  • 이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 1995
  • A high speed optic scanner capable of 16 frames/sec imaging has been developed for the realization of the infrared thermal Imaging system with a single element infrared sensor. The high speed optic scanner is composed of a rotating polygon mirror for horizontal scanning, a flat mirror mounted on a galvanometer for vertical scanning, and a spherical mirror. It has been experimentally found that the optic scanner is capable of 16 framesllsec imaging with the frame matrix size of 256 x 64.

  • PDF

Integral-floating Display with 360 Degree Horizontal Viewing Angle

  • Erdenebat, Munkh-Uchral;Baasantseren, Ganbat;Kim, Nam;Kwon, Ki-Chul;Byeon, Jina;Yoo, Kwan-Hee;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • 제16권4호
    • /
    • pp.365-371
    • /
    • 2012
  • A three-dimensional integral-floating display with 360 degree horizontal viewing angle is proposed. A lens array integrates two-dimensional elemental images projected by a digital micro-mirror device, reconstructing three-dimensional images. The three-dimensional images are then relayed to a mirror via double floating lenses. The mirror rotates in synchronization with the digital micro-mirror device to direct the relayed three-dimensional images to corresponding horizontal directions. By combining integral imaging and the rotating mirror scheme, the proposed method displays full-parallax three-dimensional images with 360 degree horizontal viewing angle.

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

용접접합부의 형상계측을 위한 주사형 시각센서의 설계에 관한 연구 (A Study on Design of Visual Sensor Using Scanning Beam for Shape Recognition of Weld Joint.)

  • 배강열
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.102-110
    • /
    • 2003
  • A visual sensor consisted of polygonal mirror, laser, and CCD camera was proposed to measure the distance to the weld joint for recognizing the joint shape. To scan the laser beam of the sensor onto an object, 8-facet polygonal mirror was used as the rotating mirror. By locating the laser and the camera at axi-symmetrical positions around the mirror, the synchronized-scan condition could be satisfied even when the mirror was set to rotate through one direction continuously, which could remove the inertia effect of the conventional oscillating-mirror methods. The mathematical modelling of the proposed sensor with the optical triangulation method made it possible to derive the relation between the position of an image on the camera and the one of a laser light on the object. Through the geometrical simulation of the proposed sensor with the principal of reflection and virtual image, the optical path of a laser light could be predicted. The position and direction of the CCD camera were determined based on the Scheimpflug's condition to fit the focus of any image reflected from an object within the field of view. The results of modelling and simulation revealed that the proposed visual sensor could be used to recognize the weld joint and its vicinity located within the range of the field of view and the resolution. (Received February 19, 2003)

고속회전 육각형 디스크의 유동기인 소음저감에 관한 연구 (A Study on the ]Reduction of Flow induced Acoustic Noise for a High-speed Rotating Hexagonal Disk)

  • 한지민;임윤철
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2005
  • The present study describes the prediction of the flow induced noise level of a high-speed rotating hexagonal disk and proposes the way how to reduce it. Since a hexagonal disk, which is used in the laser printer and named a Polygon mirror, has six sharp corners, there are low and high pressure regions on each of six edges when it rotates. Therefore, the pressure difference generates three dimension flow field and causes aerodynamic noise. The Ffowcs-Williams and Hawkings (FWH) method is employed for the analysis. We have measured the sound pressure levels and compared them with the computational results. The calculated sound pressure levels agree well with the experimental results. We modified the shape of the edges of a hexagonal disk to reduce the noise level and confirm their effects through numerical computation.

  • PDF

열상장비용 직병렬주사광학계 (A Serial-Parallel Scanner Optics for Thermal Imaging System)

  • 김창우;김현숙;홍석민;김재기
    • 한국광학회지
    • /
    • 제5권2호
    • /
    • pp.212-216
    • /
    • 1994
  • 원적외선 영역인 $8-12.\mu$m 대역의 열상장비 주사광학계를 설계 제작하였다. 검출기로 5개 소자의 SP-RITE HgCdTe를 사용하는 직병렬 주사를 위해 수평 및 수직주사에는 각각 회전다면거울과 진동평면거울을 사용하였으며, 주사연결거울로는 구면거울을 사용하여 주사거울의 크기 및 입사동에서의 동수차를 최소화 하였다. 주사광학계는 $40^{\circ}\times26.67^{\circ}$의 넓은 주사시야를 갖는다. 회절 변조전달함수의 계산결과 회절한계의 성능을 만족하였으며 제작 및 시험 결과 고분해능의 열영상을 얻을 수 있었다.

  • PDF