• Title/Summary/Keyword: rotating machine

Search Result 451, Processing Time 0.022 seconds

Analysis of the Dynamic Behavior of a CNC Automatic Lathe Spindle System (CNC 자동선반 스핀들시스템의 동적 거동 해석)

  • Kim, T.J.;Koo, J.H.;Lee, S.B.;Kim, M.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2009
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. Therefore, it is important to recognize the effect of unbalance mass. This paper presents analysis of dynamic behavior of a high speed spindle with a built-in motor. The spindle is supported by the angular contact ball bearings and the rotor is fixed at the middle of spindle. The spindle used in CNC automatic lathe has been investigated using combined methodologies of finite elements and transfer matrices. The Houbolt method is used for the integration of the system equations and the dynamic behavior of spindle is obtained considering unbalance mass of rotor. Results show that increasing rotational speed of spindle magnifies the whirl responses of spindle seriously. Also the whirl responses of spindle are affected by the other factors such as unbalance mass and bearing stiffness.

The Effects of Microstrucutral Parameters on Bending Fatigue Properties of Heavily Drawn Pearlitic Steel Filaments used for Automotive Tires (타이어 보강용 고 탄소강 미세 강선의 굽힘 피로 성질에 미치는 미세 조직의 영향)

  • Yang Y. S.;Lim S. H.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.193-197
    • /
    • 2005
  • Influences of microstructure on high-cycle fatigue (HCF) limit of high carbon $(>0.7wt.\;\%)$ steel filaments used for tires have been investigated. A series of the fatigue tests was carried out depending on carbon content by using Hunter-type tester at a frequency of 60 Hz at a tension/compression stress of 900 to 1500 MPa. Microstructural changes of the filaments were identified in the lateral direction by using transmission electron microscopy (TEM). It was found that the mechanical properties, such as fatigue limit and tensile strength, were improved with increasing carbon content, which was mainly attributed to decreased lamellar spacing and cementite thickness. However, the fatigue ratio, which is defined as the ratio of the fatigue limit to the tensile strength, was reduced in a higher carbon range of 0.8 to $0.9\;wt.\%$, while the fatigue ratio was nearly constant in a lower carbon range of 0.7 to $0.8\;wt.\%$. Overall mechanical properties of the filaments, depending on carbon content, have been discussed in terms of the microstructural parameter change of lamellar spacing and cementite thickness. In addition, the variation of cementite morphology on the fatigue crack propagation of high carbon $(0.9wt.\;\%)$ filaments will be discussed.

  • PDF

Introduction of Vibration Evaluation for APR 1400 Reactor Coolant Pump Shaft (APR 1400급 원자로냉각재펌프의 회전체 진동평가에 관한 고찰)

  • Kim, Ik Joong;Lim, Do Hyun;Kim, Min Chul;Bang, Sang Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.110-115
    • /
    • 2014
  • The nuclear power plant was launched by Kori unit 1 in 1978 years. Currently, 23 nuclear power plants have been operating in Korea since 1978 years. The localization was completed for most of the reactor facility from Hanbit(Youngkwang) unit 3&4. However, RCP(Reactor Coolant Pump) and MMIS(Man Machine Interface System) is an important technology that has been excluded from the scope of the technical transfer has been dependent on a specific overseas vendor. Recent success in RCP development through co-operation with government and industries. Developed RCP will be applied to Shin-Hanul unit 1&2 nuclear power plants. The RCP operates in high speed and high pressure condition and only rotating component in the NSSS(Nuclear Steam Supply System). Therefore, the problem of vibration has arisen caused by the hydraulic forces of the working fluid. These forces can influence on the stability characteristics for entire RCS(Reactor Coolant System) loop, and can act as significant destabilizing forces. In this study, vibration evaluation of the pump shaft of development RCP estimated under normal operation and over speed conditions. In order to predict the vibration characteristics and dynamic behavior, modal analysis, critical speed analysis and unbalance response spectrum analysis were performed.

  • PDF

A Study on the Breakdown Mechanism of Rotating Machine Insulation

  • Kim, Hee-Gon;Kim, Hee-Soo;Park, Yong-Kwan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.71-76
    • /
    • 1997
  • A lot of experiments and analyses have been done to determine the aging mechanism of mica-epoxy composite material used for large generator stator windings in order to estimate remaining life of the generator for last decades. After degrading artificially the mica-epoxy composite material, the surface analysis is performed to analyze breakdown mechanism of insulation in air and hydrogen atmosphere; i) In the case of air atmosphere, it is observed that an aging propagation from conductor to core by partial discharge effect and the formation of cracks between layers is widely carbonized surface. ii) In case of hydrogen atmosphere, the partial discharge effect is reduced by the hydrogen pressure (4kg/$\textrm{cm}^2$). Potassium ions forming a sheet of mica is replaced by hydrogen ions, which can lead to microcracks. It is confirmed that the sizes of crack by SEM analysis are 10∼20[$\mu\textrm{m}$] in length under air, and 1∼5[$\mu\textrm{m}$] in diameter, 10∼50[$\mu\textrm{m}$] in length under hydrogen atmosphere respectively. The breakdown mechanism of sttor winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the postassium ions of mica components are replaced by H\ulcorner, H$_3$O\ulcorner at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium enable creation of voids and cracks due to thermal, mechanical, electrical and environmental stresses.

  • PDF

Measurement of Flux Linkage in Salient Pole Rotor Type Single Phase SRM (돌극형 회전화 단상 SRM의 쇄교자속 측정)

  • Kim, Jun-Ho;Lee, Eun-Woong;Oh, Young-Woong;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.123-125
    • /
    • 2001
  • Salient pole rotor type single phase SRM(switched reluctance motor) uses the magnetic fluxes of radial and axial direction at the same time. Therefore the output power per unit volumn is very high and shaft length can be shorter than any other types of SRM with same output. Also, It can be manufactured with low cost thanks to simple structure and driving circuit. We already designed and manufactured prototype using the dynamic output equation of general rotating machine but the effect by salient pole structure was not considered. The most optimal design parameters for salient pole rotor type single phase SRM will be selected by comparing and analyzing the results from 3D FEM analysis, experimental values of the torque versus speed characteristics. and the nux linkage of prototype. Results for the former 3D FEM analysis and torque vs. speed characteristics were already obtained. Finally, we will measure the nux linkage of salient pole rotor type single phase SRM.

  • PDF

Machining of Repetitive Micro Patterns using Oscillation Micro Milling (진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구)

  • Ro, Seung-Kook;Khim, Gyungho;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

A Complex Noise Suppression Algorithm for On-line Partial Discharge Diagnosis Systems (운전중 부분방전 진단시스템을 위한 복합 잡음제거 기법)

  • Yi, Sang-Hwa;Youn, Young-Woo;Choo, Young-Bae;Kang, Dong-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.342-348
    • /
    • 2009
  • This paper introduces a novel denoising algorithm for the partial-discharge(PD) signals from power apparatuses. The developed algorithm includes three kinds of specific denoising sub-algorithms. The first sub-algorithm uses the fuzzy logic which classifies the noise types in the magnitude versus phase PD pattern. This sub-algorithm is especially effective in the rejection of the noise with high and constant magnitude. The second one is the method simply removing the pulses in the phase sections below the threshold count in the count versus phase pattern. This method is effective in removing the occasional high level noise pulses. The last denoising sub-algorithm uses the grouping characteristics of PD pulses in the 3D plot of the magnitude versus phase versus cycle. This special technique can remove the periodical noise pulses with varying magnitudes, which are very difficult to be removed by other denoising methods. Each of the sub-algorithm has different characteristic and shows different quality of the noise rejection. On that account, a parameter which numerically expresses the noise possessing degree of signal, is defined and evaluated. Using the parameter and above three sub-algorithms, an adaptive complex noise rejection algorithm for the on-line PD diagnosis system is developed. Proposed algorithm shows good performances in the various real PD signals measured from the power apparatuses in the Korean plants.

A Novel Rotor Position Error Calculation Method using a Rotation Matrix for a Switching Frequency Signal Injected Sensorless Control in IPMSM (스위칭 주파수 신호 주입 IPMSM 센서리스 제어를 위한 회전 행렬 기반의 새로운 위치 오차 추정 기법)

  • Kim, Sang-Il;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.402-409
    • /
    • 2015
  • This paper proposes a novel rotor position error calculation method for high-frequency signal-injected sensorless control. The rotor position error using the conventional modulation method can be only measured up to ${\pm}45^{\circ}$. In addition, when the rotor position estimation error is not sufficiently small, the small angle approximation in no longer valid. To overcome these problems, this study introduces a new rotor position error calculation method using the rotating matrix. In this study, the position error measurement range of the proposed method is extended from ${\pm}45^{\circ}$ to ${\pm}90^{\circ}$. The linearity between the real rotor position error and the estimated error is maintained by nearly $90^{\circ}$. These features of the proposed method improve the performance of the sensorless control. The validity of the proposed method is verified by simulations and experiments.

New Sensorless Control Strategy for a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • The mechanical informations such as the rotor speed and angle are required to operate the Cylindrical Permanent Magnet Synchronous Motor(PMSM). A resolver or encoder is typically used to supply the mechanical informations. This position sensor adds length to the machine, raises system cost, increases rotor inertia and requires additional devices. As the result, there has been a significant interest in the development of sensorless strategies to eliminate the position sensor. This paper presents an implementation of the new sensorless speed comtrol scheme for a PMSM. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimations error, the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.