• Title/Summary/Keyword: rotating disc electrode (RDE)

Search Result 5, Processing Time 0.02 seconds

Cu Via-Filling Characteristics with Rotating-Speed Variation of the Rotating Disc Electrode for Chip-stack-package Applications (칩 스택 패키지에 적용을 위한 Rotating Disc Electrode의 회전속도에 따른 Cu Via Filling 특성 분석)

  • Lee, Kwang-Yong;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.65-71
    • /
    • 2007
  • For chip-stack package applications, Cu filling characteristics into trench vias of $75{\sim}10\;{\mu}m$ width and 3 mm length were investigated with variations of the electroplating current density and the speed of a rotating disc electrode (RDE). Cu filling characteristics into trench vias were improved with increasing the RDE speed. There was a Nernst relationship between half width of trench vias of Cu filling ratio higher than 95% and the minimum RDE speed, and the half width of trenches with 95% Cu filling ratio was linearly proportional to the reciprocal of root of the minimum RED speed.

  • PDF

Effect of Hydrodynamic Condition on the Electrochemical Behavior of Various Metals in 3.5 wt% NaCl Solution

  • Pan, Szu-Jung;Hadinata, Samuel-Sudibyo;Kao, Ruey-Chy;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.218-225
    • /
    • 2015
  • The electrochemical behaviors of various metals with and without diamond-like-carbon (DLC) coating in 3.5 wt% NaCl solution were investigated. The effect of hydrodynamic conditions was focused by employing a rotating disc electrode (RDE). The experimental results showed that each bare metal had a more positive corrosion potential and a higher corrosion rate due to enhanced oxygen transport at the higher rotating speed of the RDE. DLC coating caused a substantial increase in the corrosion resistance of all metals studied. However, localized corrosion was still found in the DLC-coated metal at sites where deposition defects existed. Surface morphology examination was performed after the electrochemical test to confirm the roles of hydrodynamic conditions and DLC coating.

Electrochemistry and Electrokinetics of Prussian Blue Modified Electrodes Obtained Using Fe(III) Complex

  • 문성배;문정대
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.819-823
    • /
    • 1995
  • Thin films of two kinds of Prussian Blue (PB)-modified, using iron(Ⅲ) complex instead of conventional FeCl3, were prepared on a gold substrate and these films were able to be electrochemically reduced in potassium nitrate solution. In case of PB-modified films prepared from Fe(Ⅲ)-ethylenediamine-N,N'-diacetic acid (FeEN3+)/K3Fe(CN)6 solution, the mid-peak potential was 0.156 V in 0.1 M KNO3 and it was found that potassium ion migrates into or out of the film during the electrolysis. These films were shown to be electrochromic. These films exhibited smaller peak separation than those formed from Fe(Ⅲ)-tartaric acid (FeTA3+)/K3Fe(CN)6 system. The diffusion coefficient of Fe(CN)63-/4- redox couple, evaluated using the fabricated Au rotating disc electrode(rde) previously reported, was in good agreement with the existing data. Two experimental procedures, including the voltammetry at relatively low scan rates and the rde study, have been used in order to characterize the electrode kinetics. The electrode kinetics of some redox couples (FeEN2+-FeEN3+ and FeTA2+-FeTA3+) on both PB-modified thin films and bare Au electrode were studied using a Au rde. In all cases the rate constants of electron transfer obtained with the PB-modified film electrodes were only slightly less than those obtained for the same reaction on bare Au disc electrodes. The conductivities, as determined from the slopes of the i-V curves for a ca. 1 mm sample for dried PB-modified potassium-rich and deficient bulk samples pressed between graphite electrodes, were 6.21 × 10-7 and 2.03 × 10-7(Ω·cm)-1, respectively.

A Study on the Electrochemical Kinetics of Electrowinning Process of Valuable Metals Recovered from Lithium-ion Batteries (폐리튬이온전지로부터 유가금속 회수를 위한 전해채취 공정 전기화학 반응속도론적 연구)

  • Park, Sung Cheol;Kim, Yong Hwan;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.59-66
    • /
    • 2022
  • To investigate the rate-determining step of nickel, cobalt and copper electrowinning, experiments were conducted by varying the electrolyte temperature and agitation speed using a rotating disc electrode. Analyzing the rate-determining step by calculating the activation energy in the electrowinning process, it was found that nickel electrowinning is controlled by a mixed mechanism (partly by chemical reaction and partly by mass transport), cobalt is controlled by chemical reaction, and copper is controlled by mass transfer. Electrowinning of nickel, cobalt and copper was performed by varying the electrolyte temperature and agitation speed, and the comparison of the current efficiencies was used the determine the rate-determining step.

Electrochemical Study of the Effect of Additives on High Current Density Copper Electroplating (고전류밀도 구리도금에서 첨가제에 따른 전기화학적 특성변화 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.43-48
    • /
    • 2011
  • The maximum current density of copper electrorefining is 350 A/$m^2$ and the higher current density is required to promote the copper productivity. The 1000 A/$m^2$ high current density is possible when rotating disc electrode is employed to reduce diffusion thickness. The copper electroplating with 1000 A/$m^2$ is possible at 400 rpm. Thiourea and glue were used to improve the electrodeposition behaviors during copper electrorefining process. Potentiodynamic polarization tests were conducted to investigate the effects of additives on copper electrodeposition. Galvanostatic tests were also conducted at 1000 A/$m^2$. Copper were electroplated on cylindrical rotating electrodes to give the uniform flow on the electrode surface. The lowest surface roughness was obtained when 16 ppm thiourea was added to the electrolytes. The surface roughness was increased with glue concentration. The surface hardness was not influenced by addition of glue. The copper nuclei were getting smaller with thiourea concentration, however there is no glue effects on copper nucleation.